

Innovative strategies for fit-for-purpose RWE research: Maximizing data completeness and accuracy

May 7, 2024

© 2024 Cardinal Health. All Rights Reserved.

Cardinal Health Real-World Evidence and Insights

Richard Scott Swain, PhD, MPH Director, Regulatory Science and Real-World Evidence

Danielle Gentile, PhD

Senior Scientist, Real-World Evidence and Insights

Innovative strategies for fit-for-purpose RWE research:

Maximizing data completeness and accuracy

Today's agenda

For the next 30 minutes

Dataset challenges

Common dataset challenges

- Finding the patients
- Incomplete data
- Inaccurate data
- Misclassification of data
- Representativeness

Challenges lead to bias

How to spot bias in a Kaplan Meier Curve 101

- Flat line at top = immortal time bias
- Unequal number of censor points = sample size problem
- Large immediate gap = selection bias

Patient-level data from provider and practice research networks

Oncology Provider Extended Network (OPEN)

More than 800 unique GPO- and EMR-agnostic OPEN providers

PHYSICIAN-LED CHART REVIEW PROCESS

- Physicians treating patients complete electronic case report forms (eCRFs) customized during study development
- Data QA/QC including provider training, UAT, query generation
- Up-to-date data; abstraction may occur using the most recent patient encounter

VARIABLES CAPTURED

- Patient/provider demographics, clinical characteristics, genomics and biomarkers
- Outcomes including disease specific measures (e.g. tumor response, disease activity scores)

Practice Research Network (PRN)

KEY

Link PRO data with clinical/EMR data

Monitor adherence persistence and document barriers to care

Collect prospective, longitudinal patient data

9

Generate RWD and RWE to use in regulatory submissions

Data completeness and accuracy

Hard-to-find variables captured in our dataset

Provider demographics	Years in practice, number of patients, specialty, sub-specialty, practice setting
Patient demographics	Year of birth, Race, ethnicity, sex, ECOG PS
Disease state specifics	Date diagnosed, extent, stage, grade
Efficacy assessments	Disease response
Toxicity assessments	Adverse event start and end date, severity
• Therapeutics	What, when, how modified, duration, treatment regimen, line of therapy, dosage

Case study: Comparing demographic representativeness across RWE, trial data and registry data

RWE vs RCT vs SEER

12

Methodology

Studies included	Studied variables	Oncology areas	
 Selected contemporaneous periods spanning 2017-2022 Identified RWE studies conducted in Cardinal Health Identified corresponding RCTs with similar inclusion/exclusion criteria; data extracted from clinicaltrials.gov Included 7 double-blind oncology RWE studies and 9 RCTs Used SEER data as a proxy for the U.S. population 	 Age Race Ethnicity Sex (among non-breast cancer studies) 	 Breast cancer (2 RWE studies and 4 RCTs) Advaned renal cell carcinoma (1 RWE studies and 2 RCTs) Liver cancer (1 RWE study and 1 RCT) NSCLC (2 RWE studies and 1 RCT) Melanoma (1 RWE study and 1 RCT) 	

Sex at birth

Female representation was significantly higher in RWE (37.6%) vs. RCT (26.4%)

- Sex at birth was collected for 26,325 patients across 3 data sources:
 - RWE: n=2,120, 8.1%
 - RCT: n=3,962, 15.1%
 - SEER: n=20,238, 76.9%
- Aggregated across the populations studied, female representation was 37.6% in RWE, 26.4% in RCT, and 29.6% in SEER studies
 Sex at Birth

Comparison of Patient Demographics in Oncologic Randomized Controlled Trials (RCTs) with Real-World Data (RWD) and the Surveillance, Epidemiology, and End Results (SEER)

© 2024 Cardinal Health. All Rights Reserved. U.S. Population Registry

Age at first line treatment initiation

Patients in RCTs were significantly younger (56.0-60.9 yrs.) vs. RWE studies (61.8-65.7 yrs.)

In RWE studies, relative to RCTs:

- Mean age at 1L initiation was significantly higher when comparing all seven RWE studies to all eight RCTs
- Mean age at 1L initiation was also significantly higher in specific comparisons of RWE studies to three breast cancer RCTs
- Mean age at 1L initiation was also significantly higher in specific comparisons of RWE studies to two kidney cancer RCTs

Mean Age (Years) at 1L Initiation in RWE studies vs RCTs

Race

A significantly higher percentage of patients were Black/African American in RWE (7.3%-25.3%) vs. RCTs (1.3-2.9%)

- Across advanced breast, lung, liver, kidney, or melanoma skin cancer studies, Black/African American race representation was highest in RWE and lowest in RCT studies
- Representation of Black/African Americans was 25% or less across data sources by tumor type.

Black/African American Representation by Tumor Type*

Ethnicity

Hispanic patients were underrepresented in RCTs and the majority of RCTs did not report ethnicity at all

• Example in advanced renal cell carcinoma

Overall Hispanic Ethnicity Representation by Tumor Type				
N= 83,298	RWE: n(%)	RCT: n (%)	SEER: n(%)	
	n = 2,980	n = 6,168	n = 74,150	
Breast (N= 57,479)	n= 860	n= 2,707	n= 53,912	
Hispanic ethnicity ¹	96 (11.2)	Not reported	8,564 (15.9)	
Lung (N=10,089)	n= 783	n= 559	n= 8,747	
Hispanic ethnicity ¹	84 (10.7)	Not reported	610 (7.0)	
Liver (N=7,993)	n=290	n=0	n= 7,703	
Hispanic ethnicity ¹	40 (13.8)	Trial not analyzed	1,556 (20.2)	
Advanced Renal Cell Carcinoma (N=4,821) Hispanic ethnicity ¹	n= 635 95 <mark>(15.0)</mark>	n= 1,957 66 (<mark>3.4</mark>)	n= 2,229 439 (<mark>19.7</mark>)	
Skin melanoma (N=2920)	n= 412	n= 945	n= 1, 563	
Hispanic ethnicity ¹	34 (8.3)	Not reported	132 (8.4)	

Oncology clinical decisions today are based on those who participated in clinical trials, only 3% of the population

Case study: Standardization in real-world study endpoints

Fit-for-purpose data considerations

Are the data suitable to address specific regulatory questions (fit for use) answered by the reliability and relevance?

Addressing limitations of physician-charted responses in treatment outcome assessment using RWD

Claims/EMR study endpoints

- Exposure based
 - Treatment exposure
 - Time on treatment
 - Time to next treatment
- Some adverse events
 - Treated
 - Hospitalized
- Survival (maybe)

20

Chart review study endpoints

- Exposure based
 - Treatment exposure
 - Time on treatment
 - Time to next treatment
- More adverse events
 - Treated
 - Reported to physician
 - Hospitalized
- Physician-charted response
 - ORR, DoR, PFS, EFS
- Survival (likely)

Clinical trial endpoints

- Exposure based
 - Intention to treat
 - Time on therapy
- Most adverse events
 - Treated
 - Reported to trial personnel
 - Hospitalized
- BICR response (RECIST, Lugano, etc.)
 - ORR, DoR, PFS, EFS
- Survival
 - Overall survival
 - Cause-specific survival

Blinded independent central review

The gold standard

RECIST 1.1

Time point response: patients with target (+/-) non-target disease					
Target lesions	Non-target lesions	New lesions	Overall response		
CR	CR	No	CR		
CR	Non-CR/non- PD	No	PR		
CR	Not evaluated	No	PR		
PR	Non-PD or not all evaluate	No	SD		
Not all evaluated	Non-PD	No	NE		
PD	Any	Yes or No	PD		
Any	PD	Yes or No	PD		
Any	Any	Yes	PD		

Blinded independent central review

The gold standard

Lugano 2014

Standardizing in the real-world

rwLugano: an algorithm based on Lugano 2014 criteria used to derive treatment response in real-world data

rwRECIST: an algorithm based RECIST 1.1 criteria used to derive treatment response in real-world data

Evaluation of concordance across 3 measures

rwRECIST and rwLugano advance the state of the art in outcome assessment using RWD Improvement on real-world outcomes

Importance of standardized approaches to oncology therapy response classification

Deep clinical data

Real-world evidence contributes meaningful data to clinical research

To maximize data completeness and accuracy...

Representativeness

Benefits and limitations of data sources whether clinical trial, registry or realworld data must be considered when drawing conclusions

Standardized endpoints

Standardized RWD endpoints, such as rwRECIST and rwLugano, increase comparability of findings between studies

Questions?

For more information, visit us at booth 307 or email us at biopharmasolutions@cardinalhealth.com

