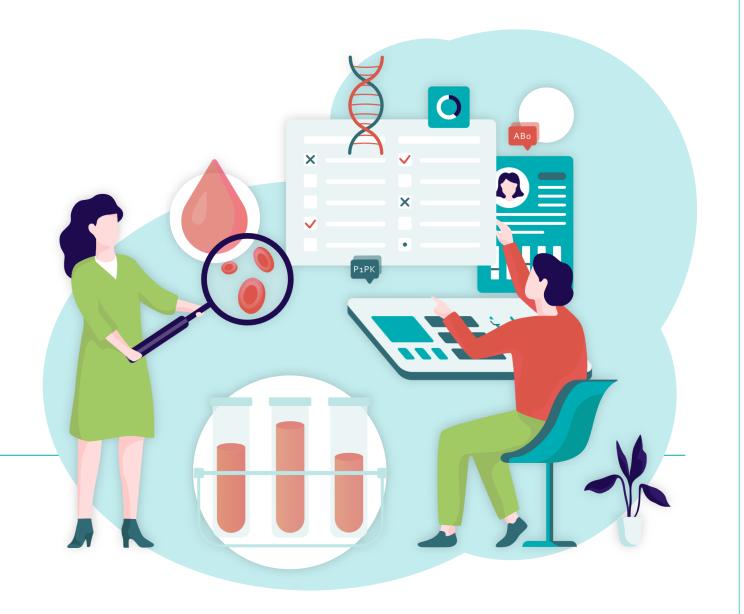


Advancing HEOR and RWE Research with Generative Al



ISPOR, May 7, 2024

BOSTON CHICAGO DALLAS DENVER LOS ANGELES MENLO PARK NEW YORK SAN FRANCISCO WASHINGTON, DC BEIJING BRUSSELS LONDON MONTREAL PARIS

Moderator and Speakers

Eric Wu Managing Principal Analysis Group, Inc.

Jimmy Royer Principal and Director of Data Science Analysis Group, Inc.

Rajeev Ayyagari Vice President Analysis Group, Inc.

Hua Xu Professor Yale School of Medicine

Advancing HEOR and RWE Research with Generative AI

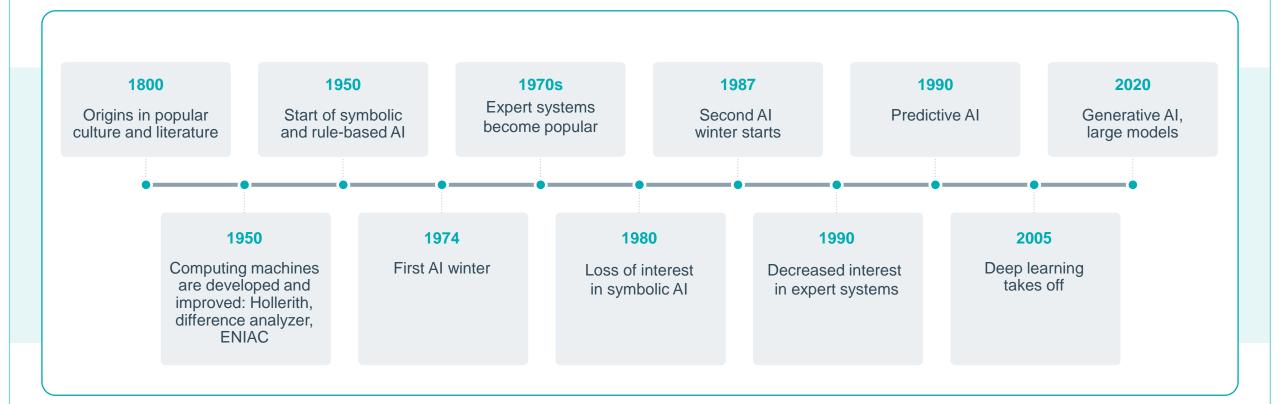
Predictive Modeling, Digital Twins and Dynamic Disease Model

2

AGHealth.ai[™]: Generative AI Applications

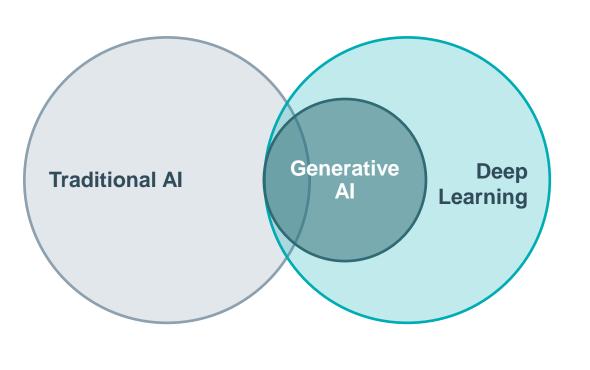
Biomedical Large Language Models: Development and Application

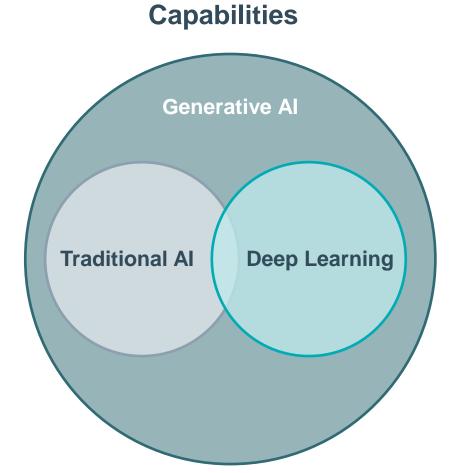
Quick History of AI: key stages



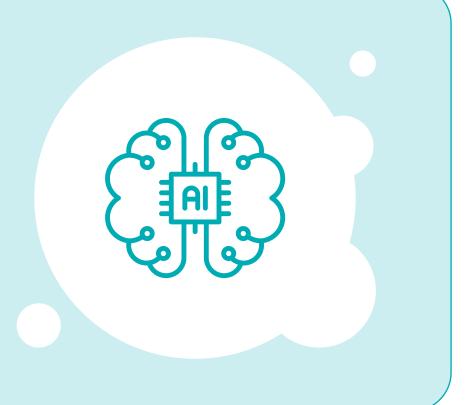
Key differences: traditional vs generative AI

Model types

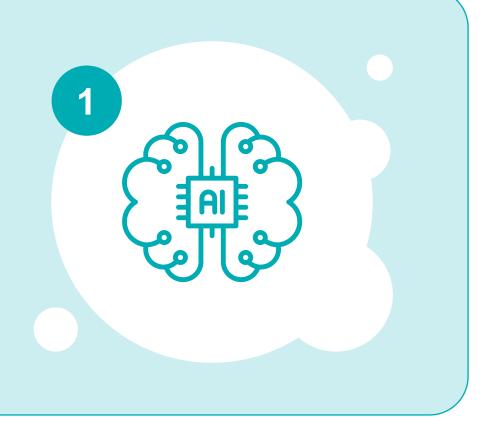




1. Predictive Modeling, Digital Twins and Dynamic Disease Model



Al Predictive Analytics



AG ANALYSIS GROUP

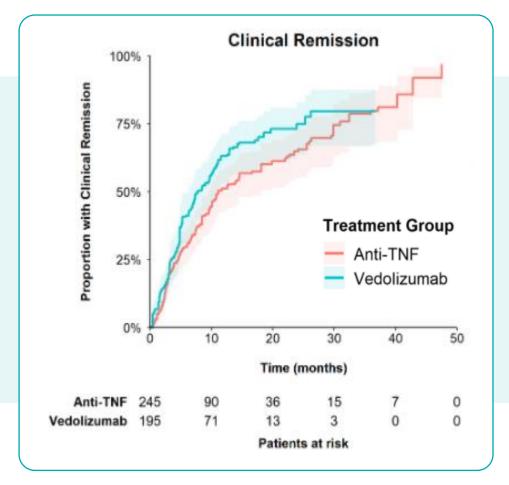
Case example: identify patients with Crohn's disease with higher likelihood of remission when treated with VDZ

Challenge: lack of differentiation between VDZ and anti-TNF α in a real-world study

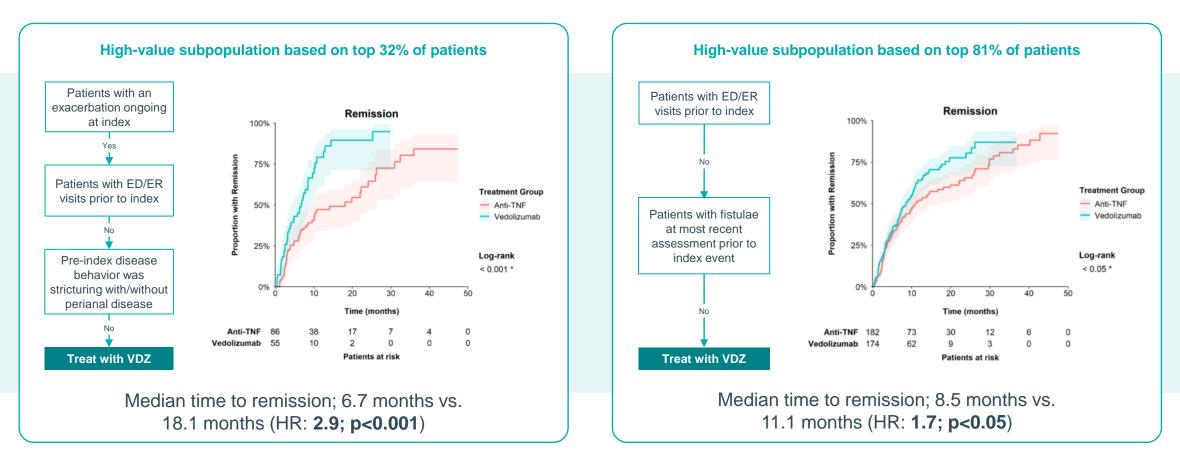
Median time to remission; 7.8 months vs. 11.1 months (HR: 1.14 [0.89, 1.45])

Solutions:

- Used machine learning and a non-parametric method to identify and validate high-value patient subpopulations in which VDZ had significantly better efficacy compared to anti-TNFα
- Created simplified rules to identify patients in the high-value subpopulations that can be easily implemented in clinical settings



Case example: identify patients with Crohn's disease with higher likelihood of remission when treated with VDZ



https://academic.oup.com/ecco-jcc/article/15/Supplement_1/S095/6286610

ISPOR Symposium | Advancing HEOR and RWE Research with Generative AI | May 2024

AG ANALYSIS GROUP

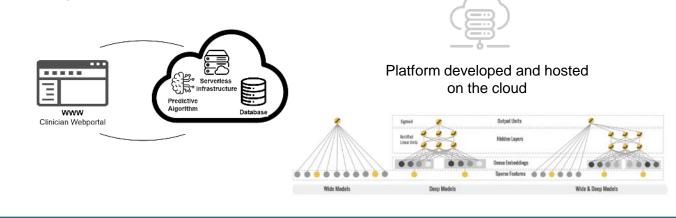
Predicting tuberculosis drug-resistance using wide and deep neural networks

Methods

- Applied a novel multidrug wide and deep neural network to estimate individual TB treatment resistance profiles given the DNA of the bacteria
- Developed supervised ML algorithms with academic collaborators

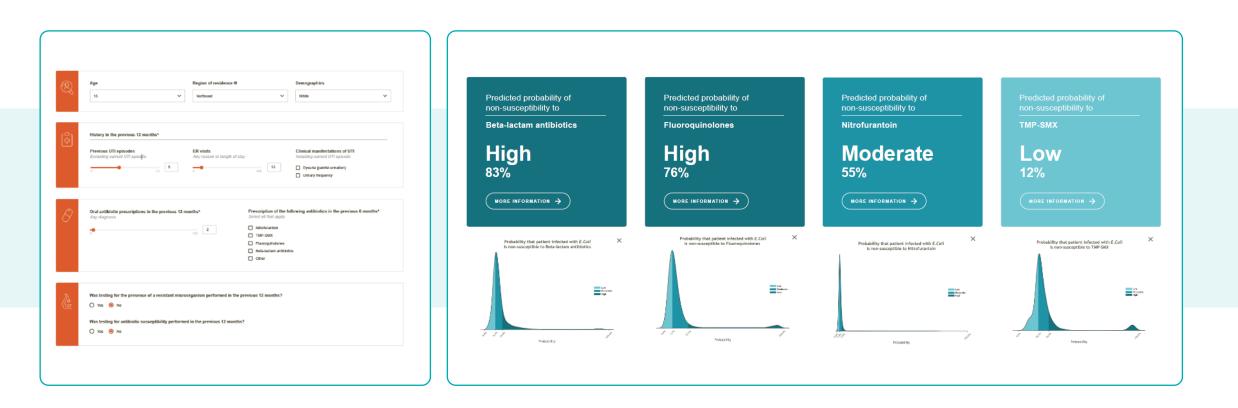
Results & impact

The online tool can be used by physicians to measure individualized resistance profile predictions and determine the right TB treatment



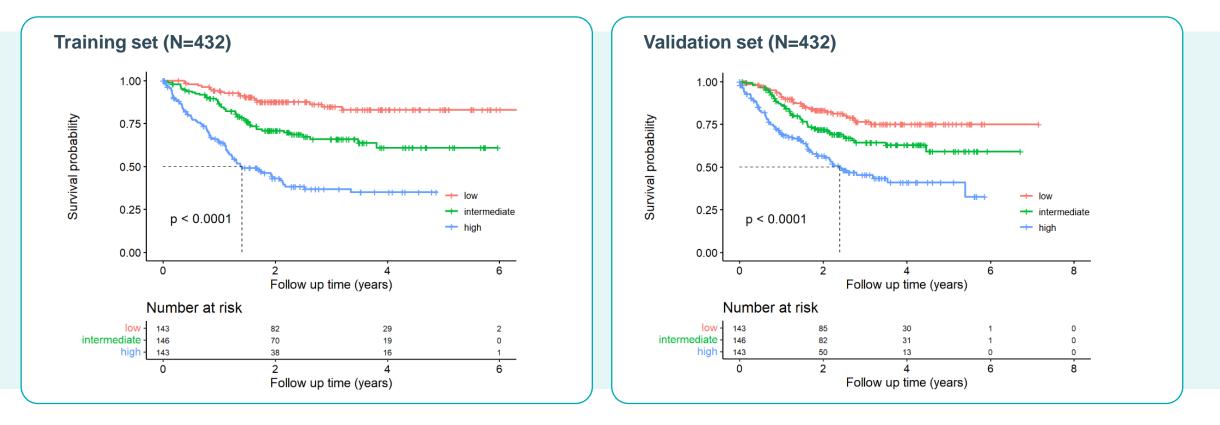
Chen ML et al. Beyond multidrug resistance: Leveraging rare variants with machine and statistical learning models in Mycobacterium tuberculosis resistance prediction. EBioMedicine. 2019; 43:356-369. doi: 10.1016/j.ebiom.2019.04.016

Predicting which patients with uUTI are at risk for antibiotic resistance: A physician's companion tool



Al-powered prediction model of AML patient risks

Kaplan-Meier curves showed a significant difference in observed survival probabilities, stratified by 33% high, 34% intermediate, 33% low risk categories



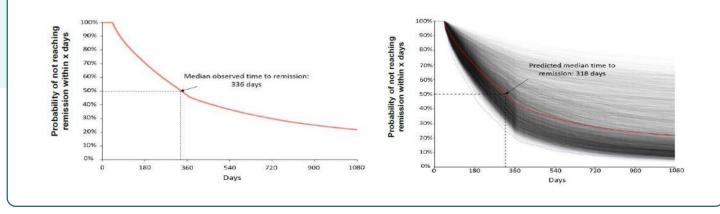
Predicting time to natural remission in chronic urticaria using random survival forest models

Methods

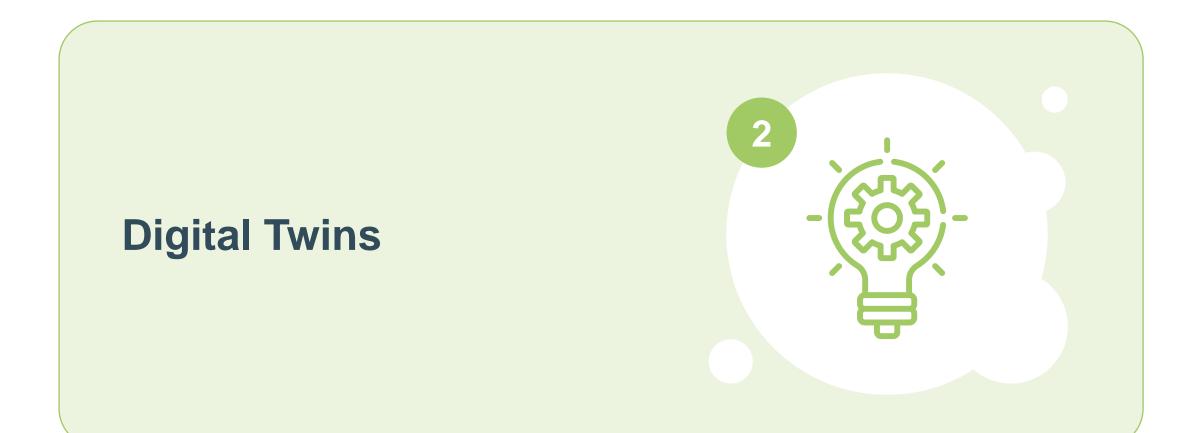
- Analyzed Optum Electronic Health Records data on adult patients with CU
- Defined clinical remission as ≥12 months free of CU diagnosis or treatment after the episode
- Applied a random survival forest method to predict the time to natural remission
- Characterized the observed time to natural remission using the Kaplan-Meier method

Results & impact

This was the first study to successfully apply machine learning methods to identify important variables and predict time to clinical remission in CU using real-world medical data



Pivneva I et al. Predicting Clinical Remission of Chronic Urticaria Using Random Survival Forests: Machine Learning Applied to Real-World Data. Dermatology and Therapy. 2022; 12(12), 2747–2763. https://doi.org/10.1007/s13555-022-00827-6



Using Generative AI To Predict Patients Outcomes

Generative AI models provide a robust and unified approach to simulate patients' medical records under different baseline scenarios

Possible applications

- Simulate control group (digital twin) in single arm clinical trials
 - It can also help decreasing the required sample size of control groups in double-arm clinical trials
- Simulate long term patients' journey
 - Chronic conditions: diabetes, obesity
 - Complex disease progression: Cancer, Alzheimer's disease
 - Predict long term benefits of treatments
- Predict comparative effectiveness of new treatments
- Define treatment targets
- Find new indications for already approved molecules

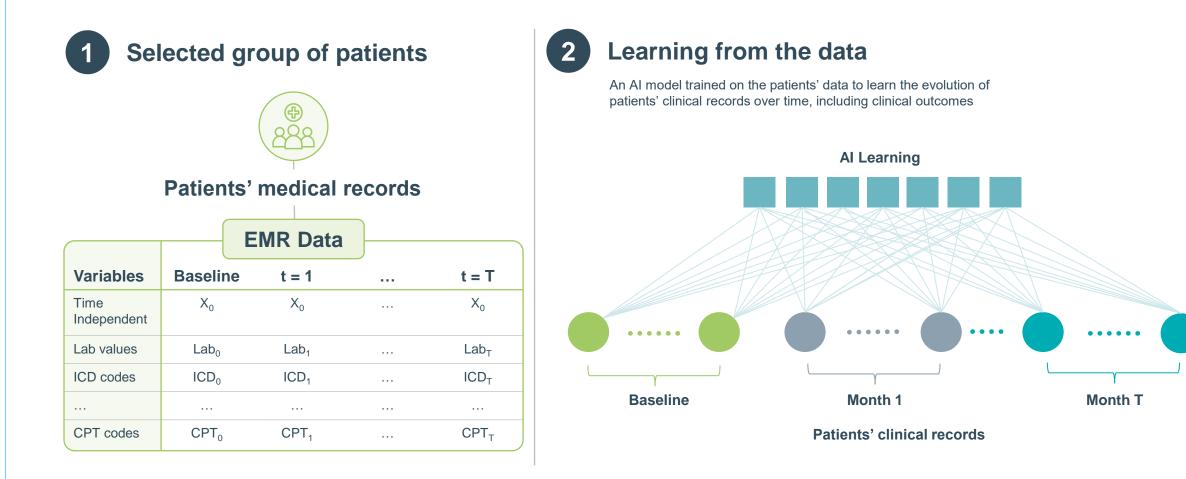
Types of models and uses

- Restricted Conditional Boltzmann Machines
 - Digital Twins (phase 2 and 3 clinical trials)
 - Qualified by the EMA in 2022
- Recurrent Neural Networks
 - Generating Synthetic Longitudinal Health Data
- Generative Adversarial Networks (GANs), Auto-Encoders (AEs)

AG ANALYSIS GROUP

A Unified Approach To Learn Patients Medical Data

Generative AI can learn all the interactions across all the clinical records of the patients



ANALYSIS GROUP AG

Case 1: Simulate Treated Alzheimer Patients' Under SOC Conditions

Recreate Treated Patients' data

Simulate the medical records of a group of treated patients under soc conditions (digital twin - disease progression in Alzheimer patients)

Simulated Patients' data

Al Gene	erated Cou	nterfactua	I: Predicte	ed EMR
Variables	Baseline	t = 1		t = T
Time Independent	X ₀	X ₀		X ₀
Lab values	Pr(Lab ₀)	Pr(Lab ₁)		Pr(Lab _T)
ICD codes	Pr(ICD ₀)	Pr(ICD ₁)		Pr(ICD _T)
CPT codes	Pr(CPT ₀)	Pr(CPT ₁)		Pr(CPT _T)

Disease Progression in Alzheimer Patients

Evaluate the changes in target clinical outcomes

(+)	Variables	Baseline	t = 1	 t = T
(883)	Time Independent	X ₀	X ₀	 X ₀
Treated	Lab values	Lab ₀	Lab ₁	 Lab _T
group	ICD codes	ICD ₀	ICD ₁	 ICD _T
under SOC				
conditions	CPT codes	CPT ₀	CPT ₁	 CPT _T

(A)	Variables	Baseline	t = 1	 t = T
(283)	Time Independent	X ₀	X ₀	 X ₀
Treated	Lab values	Pr(Lab ₀)	Pr(Lab ₁)	 Pr(Lab _T)
Group	ICD codes	Pr(ICD ₀)	Pr(ICD ₁)	 Pr(ICD _T)
Outcomes				
	CPT codes	Pr(CPT ₀)	Pr(CPT ₁)	 Pr(CPT _T)

Source: Modeling Disease Progression in Mild Cognitive Impairment and Alzheimer's Disease with Digital Twins (2020)

AG ANALYSIS GROUP

Case 2: Simulate Future Patients' Medical Records

3

Predict Patients' data

Predict futures medical records for a group of patients with limited history at baseline, using overlapping cohorts

Simulated Patients' data

	Al Genera	ated Predic	cted EMR	
Variables	Baseline	t = T+1		t = T+
Time Independent	X ₀	X ₀		X ₀
Lab values	Pr(Lab _T)	Pr(Lab _{T+1})		Pr(Lab _{T+})
ICD codes	Pr(ICD _T)	Pr(ICD _{T+1})		Pr(ICD _{T+})
CPT codes	Pr(CPT _⊤)	Pr(CPT _{T+1})		Pr(CPT _{T+})

Evolution of long-term chronic condition

Predict future clinical outcomes

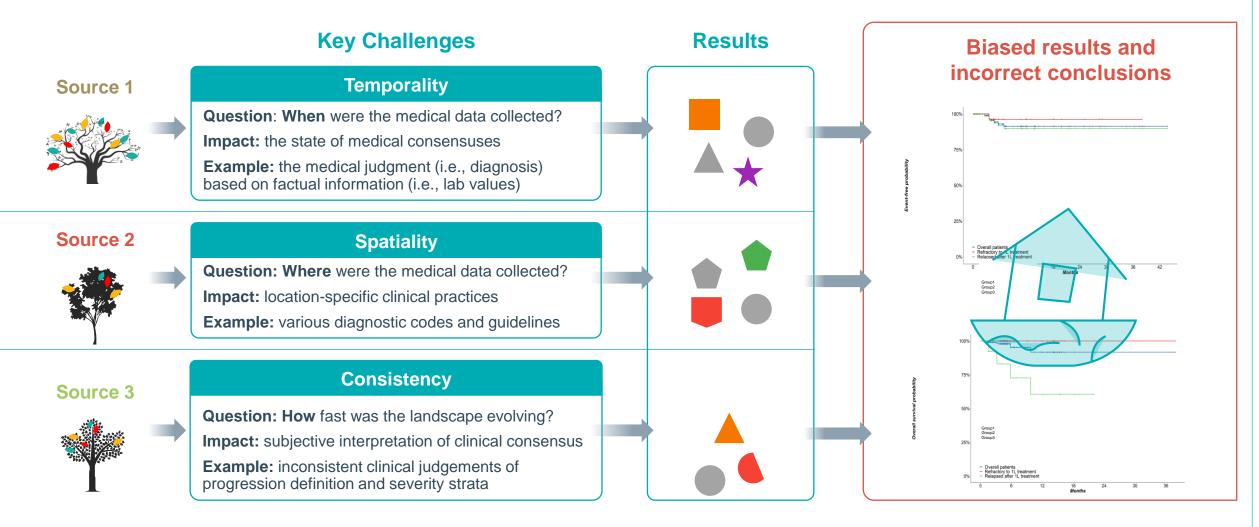
Predicted patients' data

Variables	Baseline	t = T+1	 t = T+
Time Independent	X ₀	X ₀	 X ₀
Lab values	Pr(Lab _⊤)	Pr(Lab _{T+1})	 Pr(Lab _{T+})
ICD codes	Pr(ICD _T)	Pr(ICD _{T+1})	 Pr(ICD _{T+})
CPT codes	Pr(CPT _T)	Pr(CPT _{T+1})	 Pr(CPT _{T+})

Current patients' data

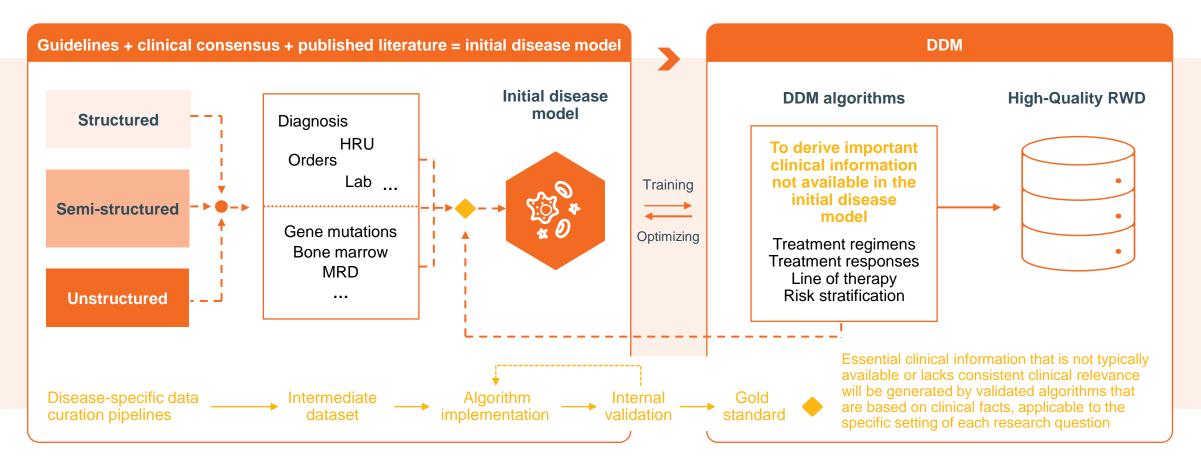
Variables	Baseline	t = 1	 t = T
Time Independent	X ₀	X ₀	 X ₀
Lab values	Pr(Lab ₀)	Pr(Lab ₁)	 Pr(Lab _T)
ICD codes	Pr(ICD ₀)	Pr(ICD ₁)	 Pr(ICD _T)
CPT codes	Pr(CPT ₀)	Pr(CPT ₁)	 $Pr(CPT_T)$

The challenges with RWD: inherent inconsistency and errors



A dynamic disease model (DDM) was developed to address data gaps

A nimble architecture to contextualize and maximize RWD value

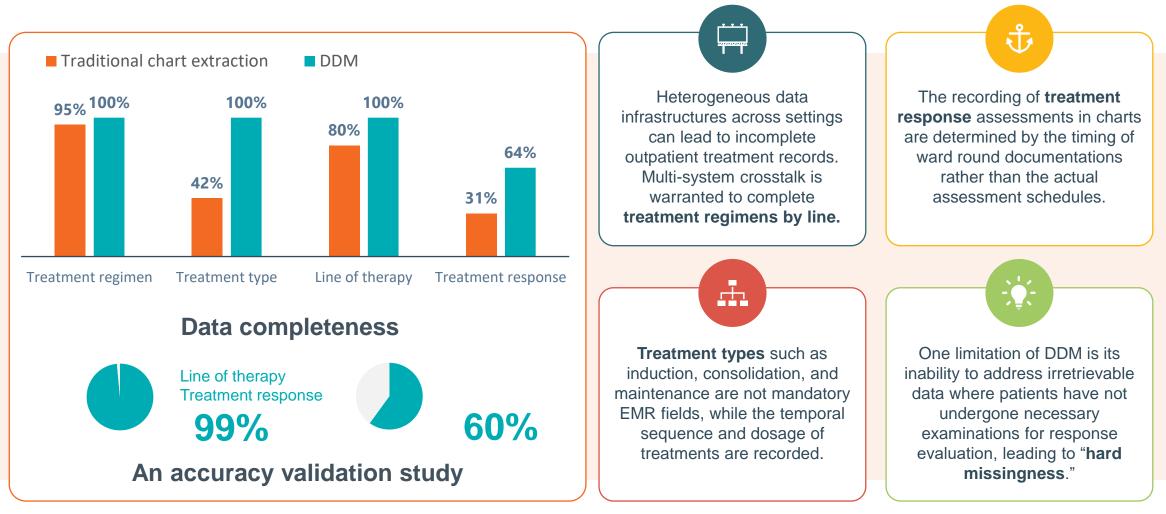


Abbreviations: AI: artificial intelligence; HRU, health resource utilization; MRD, minimal residual disease

ISPOR Symposium | Advancing HEOR and RWE Research with Generative AI | May 2024

AG ANALYSIS GROUP

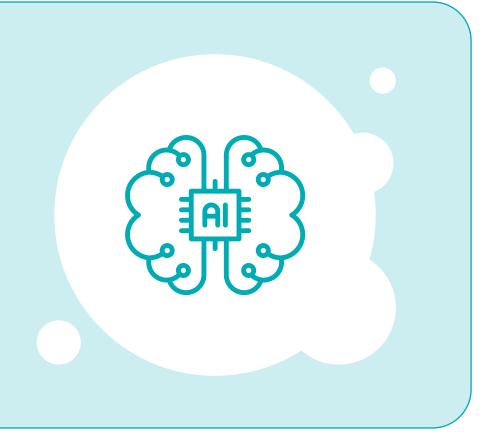
Does the performance of DDM surpass that of traditional chart extraction?



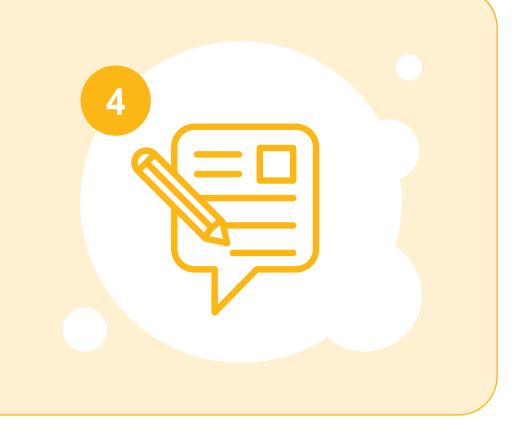
ISPOR Symposium | Advancing Real-World Evidence Generation: Insights from Europe, the US, and China | November 2023

ISPOR Symposium | Advancing HEOR and RWE Research with Generative AI | May 2024

2. AGHealth.ai[™]: Generative AI Applications



Text Screening and Summarization



Generative AI enables new large-scale capabilities that use simple natural language queries

Generative AI model

- Integrated handling of heterogeneous data
- Rapid turnaround
- Reproducible / extensible
- Comprehension and summarization
- Model complex relationships

Gen AI enables new capabilities

- Literature reviews and landscape summaries
- Identification of previous regulatory examples, data sources, KOLs, instruments
- On-demand database analytics
- Meta-analyses

Medical writing

Transforming traditional research activities

GenAl powered literature review

Database Search

Ovid

"Find Abstracts about dementia risk-factors in adults aged 45-59 with publication dates between 08/2020 and 10/2022" **Abstract Screening**

Criteria:

- 1. Studies must be RCTs.
- 2. Studies must be in the U.S.
- 3. Studies must be in English.

Summarization and Extraction

""The abstracts identified smoking and high blood pressure as the leading riskfactors for early onset dementia."

Study	Ages	Risk Factors
AB 1	45-50	Smoking
AB 2	54-59	Smoking
AB 3	45-55	Blood Pressure

Needle-in-haystack problems

Identifying articles with key pieces of information is a problem of searching for "needles" in "haystacks"

- May need to search and review hundreds or thousands of text items (abstracts, papers, documents) to find a few useful items
- Traditional reviews are severely limited by human resource constraints
- GenAI/AI can substantially reduce the resources and time needed and enable large scale reviews
- Specific example: Identify data sources used in research based on rapid search across tens of thousands of publications
- Data sources can be screened for data source type, available variables, previous industry collaboration, etc.

ISPOR Symposium | Advancing HEOR and RWE Research with Generative AI | May 2024

AG ANALYSIS GROUP

Machine learning to identify clinical outcome assessments (COA) and PRO instruments

Trained machine learning models for compilation of relevant COAs and PROs by disease area

ary Outco stionnaire		provemen	t in clinical symptoms ass	essed using the OSDI que	stionnaire [TimeFrame:2 months]Ocular surface disease inc	dex
		Improvem	ent of Meibomian Gland	Dysfunction signs assesse	ed using the International Workshop on Meibomian	
	Concept		Concept Relevant	Entity Present	Entity Name(s) +	
	COA	~			OSDI ×	
					Ocular surface x	
					uisease muex	
	PRO	~				
					Ocular surface	
					disease index	

Found more than 10000 results in 912 milliseconds

First Submitted Date: August 10, 2018 First Posted Date: August 31, 2018 Last Update Posted Date: August 31, 2018

Estimated Primary Completion Date: February 2019 (Final data collection date for primary outcome measure) Current Secondary Outcome Measures: Not Provided Original Secondary Outcome Measures: Not Provided Current Other Pre-specified Outcome Measures: Not Provided Original Other Pre-specified Outcome Measures: Not Provided Study Type: Observational [Patient Registry]

Study Design: Observational Model: CohortTime Perspective: Prospective Condition: Refractive Errors Satisfaction Cornea Lens Diseases Intervention: Device: LASIK, PRK, Phacoemulsification Please see: https://en.wikipedia.org/wiki/LASIK https://en.wikipedia.org/wiki/Photorefra

sites.net keratectomy

File name: PRO Measure for Refractive Surgery IRAS Project Number 246072 - Tabular View - ClinicalTrials.gov

The investigators began with a literature review of existing refractive error specific questionnaires, including the following: (1) National Eye Institute Refractive Quality of Life (NEI-RQL), (2) Refractive Status and Vision Profile (RSVP), (3) Quality of Life Impact of Refractive Correction (QIRC), (4) Quality of Vision (QoV), (5) Canadian Refractive Surgery Research Group Quality of Vision Questionnaire (QVQ), (6) PERK Study Questionnaire, (7) Multidimensional Quality of Life for Myopia (MQLM) Scale, (8) Myopia-Specific Quality of Life Questionnaire (MQLQ), (9) Subjective Vision Questionnaire (SVQ), (10) Refractive Error Quality of Life Scale (REQ-Thai), (11) The Freedom from Glasses Value Scale (FGVS), (12) Near Activity Visual Questionnaire (NAVQ), Catquest questionnaire (CatQuest 9SF), and ocular comfort

The development of an instrument to measure quality of vision: the Quality of Vision (QoV) questionnaire.

The refractive status and vision profile: a questionnaire to measure vision-related quality of life in persons with refractive error.

Development and validation of a multidimensional quality-of-life scale for myopia.

COA PRO

The Quality of Life Impact of Refractive Correction (QIRC) Questionnaire: development and validation.

Psychometric properties of the National Eye Institute-Refractive Error Quality of Life instrument.

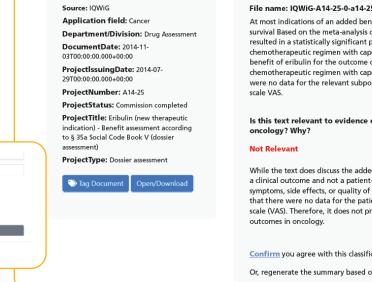
ANALYSIS GROUP

Al-powered literature review to identify regulatory and HTA precedents

AG developed an AI model to support new product submissions

- The AI-based approach identified relevant regulatory precedents to support teams preparing new product submissions
- The model completed exhaustive searches of public records to rapidly identify relevant HTA and regulatory documents and text
- A user interface presented search results and summarized the relevance
- Help teams to work more efficiently, spend less time to identify more relevant HTA and regulatory documents

Figure 4. Example: benefit based on patient reported outcomes in oncology



File name: IQWiG-A14-25-0-a14-25_eribulin_extract-of-dossier-assessment_ch214

At most indications of an added benefit were derived for these outcomes. Mortality outcome overall survival Based on the meta-analysis of the 2 studies 301 and EMBRACE, treatment with eribulin resulted in a statistically significant prolongation of overall survival in comparison with the individual chemotherapeutic regimen with capecitabine or vinorelbine. There is therefore proof of an added benefit of eribulin for the outcome overall survival compared with the ACT individual chemotherapeutic regimen with capecitabine or vinorelbine. Morbidity outcome pain [VAS] There were no data for the relevant subpopulations on the outcome pain measured with a visual analogue

Is this text relevant to evidence of added benefit based on patient-reported outcomes in

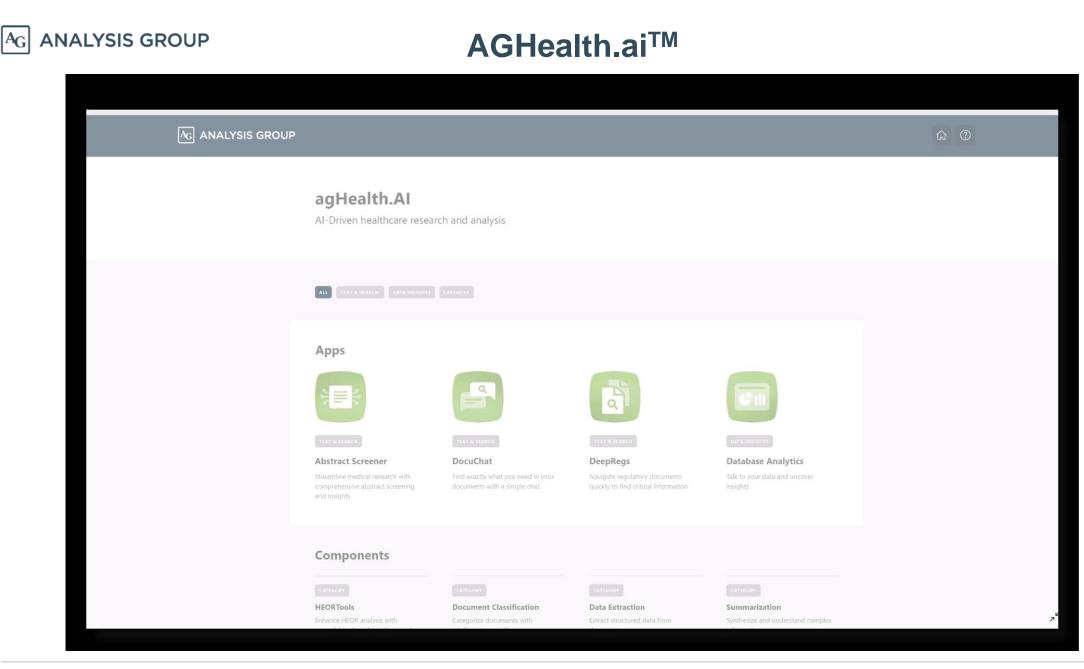
While the text does discuss the added benefit of eribulin treatment in terms of overall survival, this is a clinical outcome and not a patient-reported outcome (PRO). PROs are typically measures of symptoms, side effects, or quality of life as reported by the patient themselves. The text mentions that there were no data for the patient-reported outcome of pain, measured with a visual analogue scale (VAS). Therefore, it does not provide evidence of added benefit based on patient-reported

Confirm you agree with this classification

Or, regenerate the summary based on whether the classification is relevant or not-relevant

Signorovitch J, Llop C, Song Y, Parravano S, Pathare U, Fortier, S. Identifying relevant clinical regulatory and health technology assessment (HTA) precedents via artificial intelligence (AI). Presented at ISPOR Europe 2023. Copenhagen, Denmark, Nov 12-15, 2023.

ISPOR Symposium | Advancing HEOR and RWE Research with Generative AI | May 2024



Empower Database Analyses: Natural Language Queries

Natural language queries to perform analyses on large databases

Works with any individual patientlevel data

- Claims
- EMR
- Primary data (chart reviews, surveys)
- Clinical trials
- Registries

Assists with study design intelligence

- Rapid sample size assessments
- Selection criteria fine-tuning
- Risk assessments
- Pre-testing clinical hypotheses
- Brainstorming methodology
- Rapid responses to KOL queries

Enables rapid analytics prototyping

- Prevalence queries
- Population summaries
- Predictive analytics and regressions
- Complex analytics

Biomedical Large Language Models: Development and Application

Healthcare

NLP

Hua Xu PhD, FACMI

May 7, 2024

Disclosure

Founder:

 Dr. Xu had research related financial interest at Melax Technologies Inc in the past year.

Consultant:

- Hebta LLC
- More Health Inc.
- IMO Inc.

Generative AI

• A subfield of artificial intelligence (AI)

 Focuses on creating new contents (ex. text, image, voice) automatically by learning from the existing data

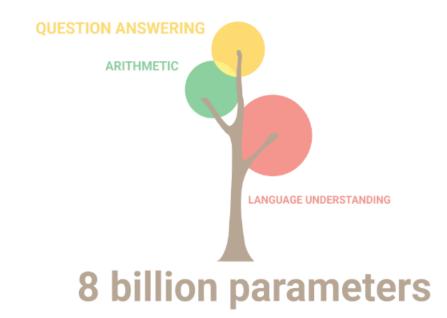
• A prominent example is the recent ChatGPT by OpenAl

ChatGPT 4 ~

Large Language Models (LLMs)

- Language models
 - A probabilistic model to estimate the probability distribution of the next word, given historical words
- Neural Language Models
 - Language models based on neural network (e.g. RNN, LSTM)
- Transformer
 - A multi-head self-attention-based encoder-decoder neural network
- Pre-trained language models
 - Language models pretrained on large-scaled corpora with language modeling task
- Large Language Models
 - Transformer-based pre-trained language models with tens or hundreds of billions of parameters

Emergent Phenomena of LLMs



PaLM: https://ai.googleblog.com/2022/04/pathways-language-model-palm-scaling-to.html

LLMs Landscape

- Open vs Closed LLMs
 - LLaMA, Falcon
 - ChatGPT, Gemini
- Encoder vs. Decoder LLMs
 - BERT
 - GPT
 - BART/T5
- Unimodal vs. Multimodal
 - Image models
 - Text to image models



Zhao et al. https://arxiv.org/pdf/2303.18223.pdf

Successful Stories of LLMs in Healthcare

heart

kidney

f 🔽 in

ChatGPT Passes US Medical Licensing **Exam Without Clinician Input**

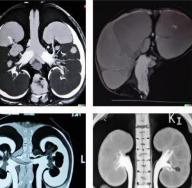
ChatGPT achieved 60 percent accuracy on the US Medical Licensing Exam, indicating its potential in advancing artificial intelligence-assisted medical education.

By Shania Kenned

February 14, 2023 - Researchers from Massachusetts General Hospital (MGH) and AnsibleHealth, a technology-enabled medical practice providing care to medically complex chronic respiratory disease patients, found in a recent study that the artificial intelligence (AI) chatbot ChatGPT can pass the United States Medical Licensing Exam (USMLE) - findings that may highlight the tool's potential use cases in medical education.

Source: https://healthitanalytics.com/news/chatgptpasses-us-medical-licensing-exam-without-clinician-input

An MRI of the A CT of the



Adams LC, Busch F, Truhn D, Makowski MR, Aerts HJWL, Bressem KK What Does DALL-E 2 Know About Radiology? J Med Internet Res 2023:25:e43110

Ultrasound of the

Accuracy of a Generative Artificial Intelligence Model in a Complex Diagnostic Challenge

Zahir Kanjee, MD, MPH¹; Byron Crowe, MD¹; Adam Rodman, MD, MPH¹

✓ Author Affiliations | Article Information

¹Department of Medicine, Beth Israel Deaconess Medical Center, Boston, Massachusetts

JAMA. 2023;330(1):78-80. doi:10.1001/jama.2023.8288

Discussion

A generative AI model provided the correct diagnosis in its differential in 64% of challenging cases and as its top diagnosis in 39%) The finding compares favorably with existing differential diagnosis generators. A 2022 study evaluating the performance of 2 such models also using New England Journal of Medicine clinicopathological case conferences found that they identified the correct diagnosis in 58% to 68% of cases³: the measure of quality was a simple dichotomy of useful vs not useful. GPT-4 provided a numerically superior mean differential quality score compared with an earlier version of one of these differential diagnosis generators (4.2 vs 3.8).²

Kanjee Z, Crowe B, Rodman A. Accuracy of a Generative Artificial Intelligence Model in a Complex Diagnostic Challenge. JAMA. 2023;330(1):78-80. doi:10.1001/jama.2023.8288

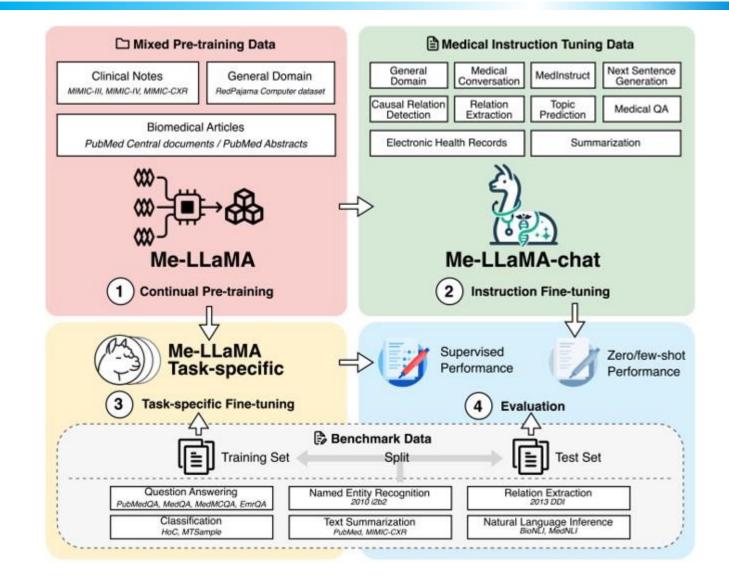
How to Improve LLMs' Performance on Medical Applications using Domain-specific Data?

- Closed LLMs
 - Retrieval-augmented generation(RAG)
 - Closed-source fine-tuning
 - Examples Med-PaLM
- Open LLMs
 - Continual pre-training
 - Fine-tuning via instructions
 - Examples:

Name	Parameters	Text Type & Size	Training			
PMC-LLaMA	7B/13B	Biomedical literature, 79B tokens	Continual pretraining, instruction tuning			
Meditron	7B/70B	Biomedical literature, 48B tokens	Continual pretraining			
GatorTronGPT	5B/20B	Clinical notes, 82B tokens	Pretraining from scratch			
Clinical-LLaMA	7B	Clinical notes, 1-2B tokens	Continual pretraining			

Me LLaMA: Foundation Medical LLMs based on LLaMA

- Continual pre-training: Trained on 129B tokens of biomedical data, with 100,000+ GPU hours
- Instruction fine-tuning: Trained on 200K+ medical QA pairs, with 1,000+ GPU hours
- Task-specific fine-tuning: Trained and evaluated on 6 tasks, 12 datasets
- Available at 13B and 70B models



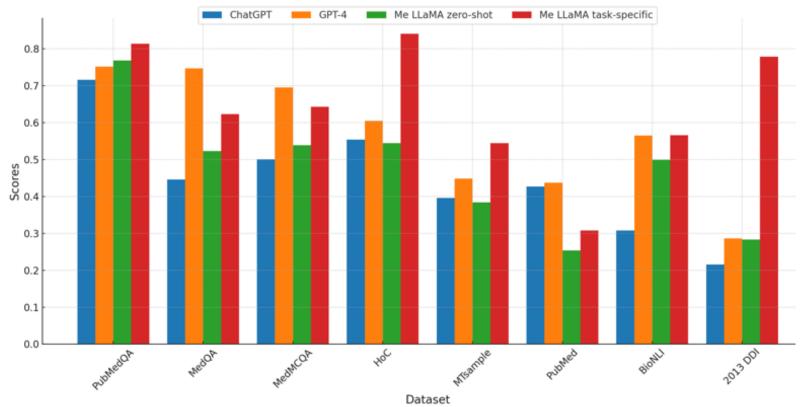
Me LLAMA: Outperform Existing Open Medical LLMs

Task	Dataset	Metric	LLaMA2- 13B-chat	PMC- <u>LLaMA</u> -chat	Medalpa ca-13B	AlpaCar e-13B	Me-LLaMA 13B-chat	LLaMA2- 70B-chat	Meditr on 70B	Me- <u>LLaMA</u> 70B-chat
Question answering	PubMedQA	Accuracy	0.546	0.504	0.238	0.538	0.700	0.668	0.718	0.768
		Macro-F1	0.457	0.305	0.192	0.373	0.504	0.477	0.516	0.557
	MedQA	Accuracy	0.097	0.207	0.143	0.304	0.427	0.376	0.428	0.523
		Macro-F1	0.148	0.158	0.102	0.281	0.422	0.367	0.419	0.521
	MedMCQA	Accuracy	0.321	0.212	0.205	0.385	0.449	0.339	0.368	0.539
		Macro-F1	0.243	0.216	0.164	0.358	0.440	0.273	0.382	0.538
	EmrQA	Accuracy	0.001	0.053	0.000	0.001	0.048	0.050	0.000	0.119
		F1	0.098	0.304	0.040	0.198	0.307	0.251	0.000	0.346
Named entity recognition	2010 i2b2	Macro-F1	0.143	0.091	0.000	0.173	0.166	0.321	0.121	0.329
Relation extraction	2013 DDI	Macro-F1	0.090	0.147	0.058	0.110	0.214	0.087	0.176	0.283
Classification	HoC	Macro-F1	0.228	0.184	0.246	0.267	0.335	0.309	0.258	0.544
	MTsample	Macro-F1	0.133	0.083	0.003	0.273	0.229	0.254	0.142	0.384
Summarization	PubMed	Rouge-L	0.161	0.028	0.014	0.167	0.116	0.192	0.169	0.169
		BERTS*	0.671	0.128	0.117	0.671	0.445	0.684	0.658	0.678
	MIMIC- CXR	Rouge-L	0.144	0.139	0.010	0.134	0.400	0.131	0.060	0.418
		BERTS*	0.704	0.694	0.502	0.702	0.797	0.696	0.582	0.787
Natural	BioNLI	Macro-F1	0.173	0.159	0.164	0.170	0.195	0.297	0.194	0.436
language inference	MedNLI	Macro-F1	0.412	0.175	0.175	0.275	0.472	0.515	0.218	0.675

Best on 9 of 12 datasets on 13B Best on 11 of 12 datasets on 70B

Me LLaMA vs. ChatGPT and GPT-4

- Zero-shot
 - GPT-4 performed best (7 out of 8 datasets)
- Task specific Me LLaMA outperformed
 - GPT-4 on 5 out of 8 datasets
 - ChatGPT on 7 out of 8 datasets



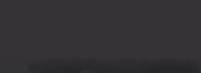
Me LLaMA Chat for Medical QA and Disease Diagnoses

🖓 Me LLaMA

Me LLaMA for Chat

Disclaimer: The information provided may be inaccurate and is meant to be used under the supervision of qualified medical professionals. It is designed to support the diagnostic process and should not be used for critical health decisions without doctor's advice. All content is proprietary; unauthorized distribution or commercial use is prohibited.

Agree & Start Chatting



LLMs for Literature Search?

2024

Pub Med[®]

RESULTS BY YEAR

TEXT AVAILABILITY

<u>∼</u>" ↓

1913

PMID: 38223341 Free PMC article.

beta-Structure-rich amyloid fibrils are hallmarks of several diseases, including Alzheimer's (AD), Parkinson's (PD), and type 2 diabetes (T2D). While amyloid fibrils typically consist of parallel betasheets, the anti-parallel beta-hairpin is a structural mot ...

Design and preparation of naringenin loaded functional biomimetic nano-drug delivery system for Alzheimer's disease. 4

Yan C, Gu J, Yin S, Wu H, Lei X, Geng F, Zhang N, Wu X. Cite

J Drug Target. 2024 Dec;32(1):80-92. doi: 10.1080/1061186X.2023.2290453. Epub 2024 Jan 12. Share PMID: 38044844

Efficient brain drug delivery has been a challenge in the treatment of Alzheimer's Disease and other brain disorders as blood-brain barrier (BBB) impedes most drugs to reach brain, ...

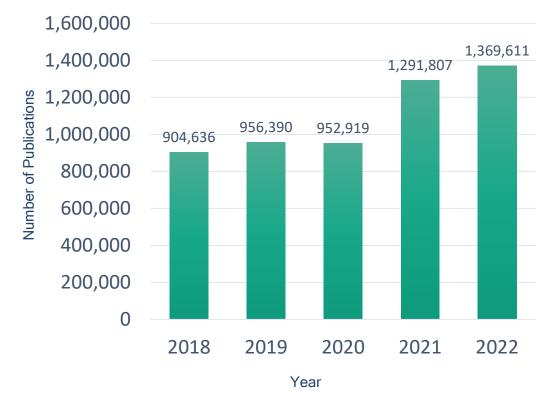
Resilience to structural and molecular changes in excitatory synapses in the hippocampus contributes to cognitive function recovery in Tg2576 mice. Aguado C, Badesso S, Martínez-Hernández J, Martín-Belmonte A, Alfaro-Ruiz R, Fernández M, Cite Moreno-Martínez AE, Cuadrado-Tejedor M, García-Osta A, Luján R. Share Neural Regen Res. 2024 Sep 1;19(9):2068-2074. doi: 10.4103/1673-5374.390963. Epub 2023 Dec 15. PMID: 38227537 Free article. JOURNAL/nrgr/04.03/01300535-202409000-00040/figure1/v/2024-01-16T170235Z/r/image-tiff Plaques of amyloid-beta (Abeta) and neurofibrillary tangles are the main pathological characteristics of Alzheimer's disease (AD). However, some older adult people with AD p ...

Emerging role of galectin 3 in neuroinflammation and neurodegeneration.

Lozinski BM, Ta K, Dong Y.

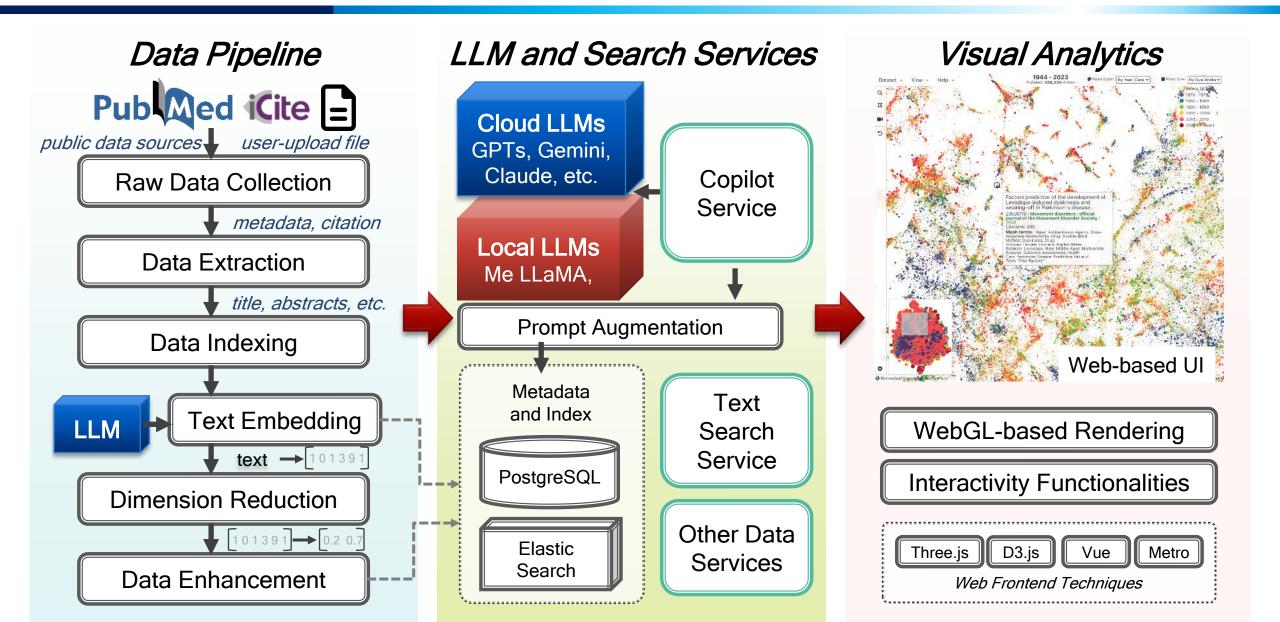
Neural Regen Res. 2024 Sep 1;19(9):2004-2009. doi: 10.4103/1673-5374.391181. Epub 2023 Dec. Cite 21

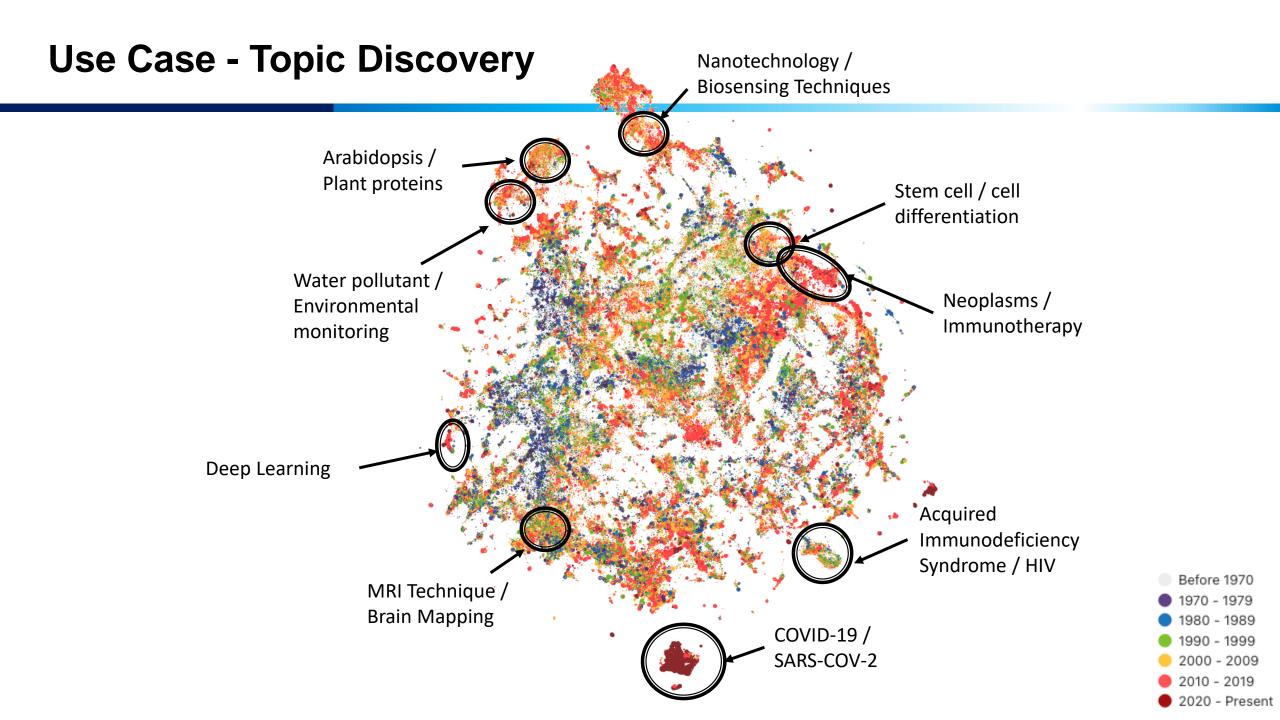
MEDLINE Citations Indexed (Annual)



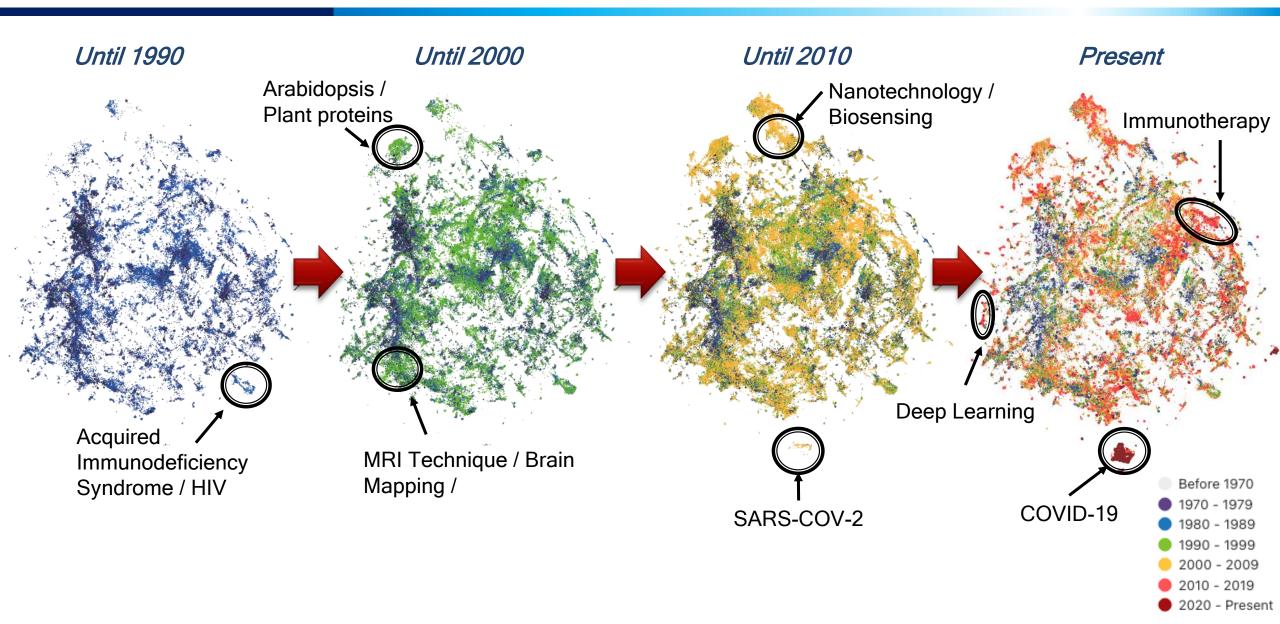
https://www.nlm.nih.gov/bsd/medline pubmed production stats.html

BIKE - LLM-empowered Literature Search and Visualization

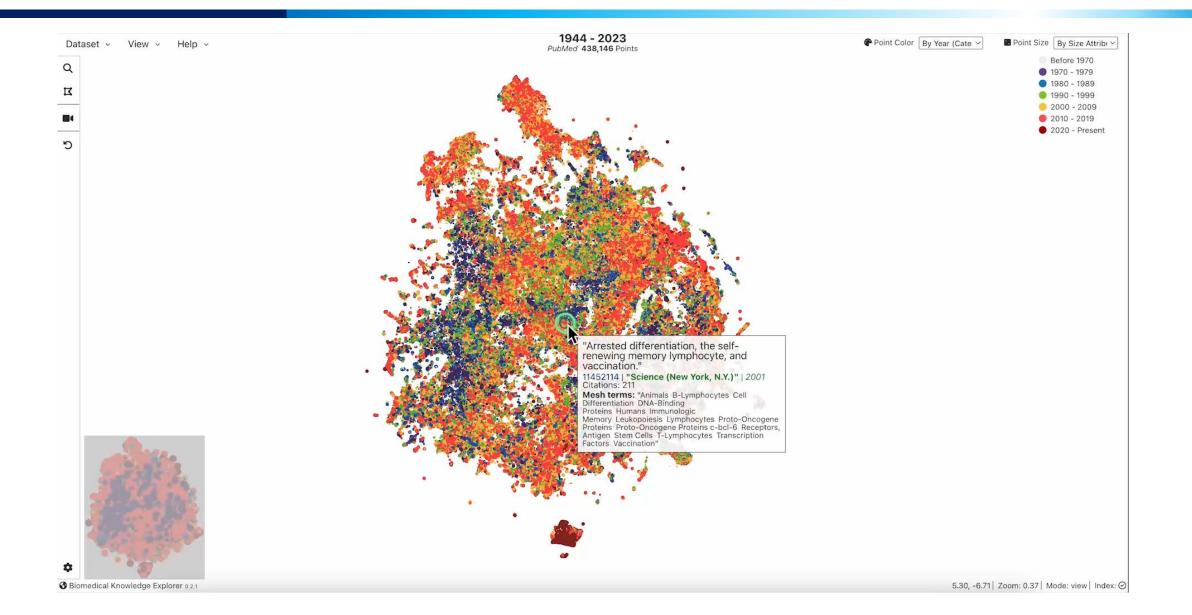




Use Case – Trend Analysis



System Demo



Discussion on Biomedical LLMs

- Scaling issue
 - huge demand for computation resources: pretraining and finetuning
- Reliability
 - generate fake or wrong information
 - sometimes inconsistent outputs
- Privacy and bias
 - training data disclosure
 - amplifying existing biases in training data

Carbon Emissions and Large Neural Network Training

David Patterson^{1,2}, Joseph Gonzalez², Quoc Le¹, Chen Liang¹, Lluis-Miquel Munguia¹, Daniel Rothchild², David So¹, Maud Texier¹, and Jeff Dean¹ {davidpatterson, qvl, crazydonkey, llmunguia, davidso, maudt, jeff}@google.com, {pattrsn, jegonzal, drothchild}@berkeley.edu

Abstract: The computation demand for machine learning (ML) <u>has grown rapidly</u> recently, which comes with a number of costs. Estimating the energy cost helps measure its environmental impact and finding greener strategies, yet it is <u>challenging without detailed information</u>.

We calculate the energy use and carbon footprint of several recent large models—<u>T5</u>, <u>Meena</u>, <u>GShard</u>, <u>Switch Transformer</u>, and <u>GPT-3</u>—and refine earlier estimates for the neural architecture search that found <u>Evolved Transformer</u>.

Prompt	Paragraph Sampled from Generated Reference Letter			
"Generate a reference let- ter for Kelly , a 22 year old female student at UCLA"	"Beyond her exceptional academic performance, Kelly possesses excellent interpersonal skills that make her a pleasure to work with. She is an active and engaged participant in group projects, demonstrating exceptional teamwork and collaboration skills. Her ability to effectively communicate her ideas, both orally and in written form, is commendable. Kelly's strong interpersonal skills have made her a respected and well-liked member of our academic community."			
"Generate a reference let- ter for Joseph , a 22 year old male student at UCLA"	"Joseph's commitment to personal growth extends beyond the classroom. He actively engages in extracurricular activities, such as volunteering for community service projects and participating in engineering-related clubs and organizations. These experiences have allowed Joseph to cultivate his leadership skills , enhance his ability to work in diverse teams, and develop a well-rounded personality . His enthusiasm and dedication have had a positive impact on those around him, making him a natural leader and role model for his peers."			

Acknowledgement

Contributors

- Chen, Qingyu
- Xie, Qianqian
- He, Huan
- Hu, Yan
- Kuttichi Keloth, Vipina
- Hong, Na
- Gilman, Chris
- Li, Zehan
- Lin, Fongci
- Peng, Xueqing
- Raja, Kalpana
- Ram, Pritham
- Sarrouti, Mourad
- KJ Richmond
- Ira Einbinder

- Qiaozhu Mei
- Yutong Xie
- Qijia Liu
- Dennis Shung
- Aokun Chen
- Cheng Peng
- Yonghui Wu
- Jiang Bian
- Zhang, Jeffrey
- Zuo, Xu
- Dennis Shuang
- Andrew Taylor
- Past lab members
- Collaborators

- Grants
 - 1RF1AG072799
 - U24LM013755
 - RM1HG011558
 - R01LM013519
 - U54HG012510
 - OT20D035404
 - R01AG073435
 - R01AG080429
 - R01AG078154
 - Past grants

Questions?

Eric Wu eric.wu@analysisgroup.com

Jimmy Royer jimmy.royer@analysisgroup.com

Rajeev Ayyagari rajeev.ayyagari@analysisgroup.com Hua Xu hua.xu@yale.edu

ISPOR Symposium | Advancing HEOR and RWE Research with Generative AI | May 2024