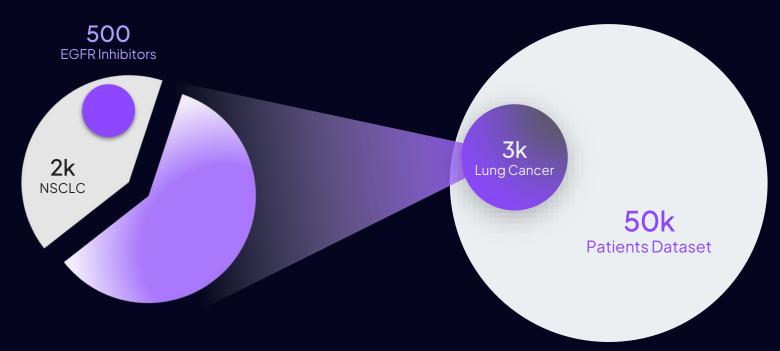


Accelerating Evidence Generation and Time to Insight With Clinical AI

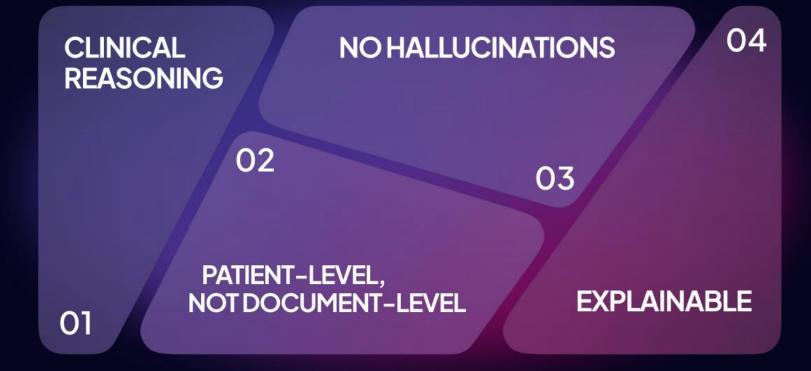
Jose Mena, Sr. Director of Data and Bioinformatics, Mendel AI Vivek Rudrapatna, MD, PhD, Co-director, Center for Real-World Evidence, UCSF Health Wael Salloum, PhD, Co-Founder and Chief Scientific Officer, Mendel AI

HEOR Needs Clinical AI

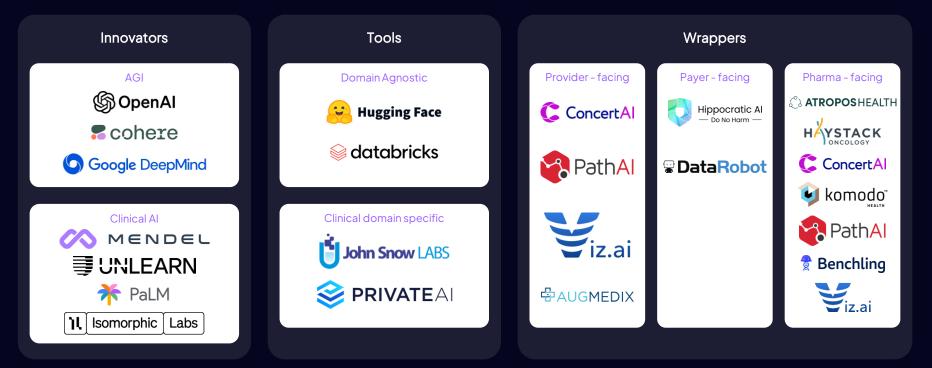
Jose Mena


Copyright 2024. All rights reserved

2

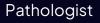

Success hinges on isolating a narrow cohort & understanding it in-depth

"Find patients who have advanced NSCLC with more than one EGFR TKI"



With Clinical AI, not just any AI

Clinical Al Market Landscape



Reasoning over longitudinal data is challenging

"Find patients who have advanced NSCLC with more than one EGFR TKI"

"Mass, left lung, needle biopsy: adenocarcinoma, moderately differentiated"

"Left lobe lower biopsy revealed a pulmonary adenocarcinoma. She was staged with 3A (T2, N2, M0) lung cancer of the left lower lobe."

Claims data

"Neoplasm of lung of uncertain behavior"

History of Tarceva 100mg Radiologist

"Brain metastasis, for which the patient received palliative radiation therapy" Sequencing data

Clinical note

T790M mutation

"Developed resistance to TKI"

Standard ontologies vs ontologies for reasoning

	Standard Ontologies	Ontology for reasoning			
Use case	Standard vocabulary for coding & billing	Knowledge representation for efficient & effective reasoning			
Ease of use	 Too many concepts (3M UMLS) & duplicates Carcinoma appears 4 times in SNOMED CT Illogical hierarchy Tagrisso not included under EGFR inhibitors Missing concepts "EGFR + lung cancer" but no EGFR	 Reductionism: break down into smallest conceptual units ("concemes") Coherence: hierarchy designed logically by clinical experts over years Generative: concemes can be combined into any thought natural language can express 			
Updates	Updated monthly or yearly	Constantly augmented driven by clinical experts and machine learning			

Cohort retrieval is a fundamental task in healthcare AI

Closing gaps in clinical practice

Clinical trial recruitment

Descriptive epidemiology studies

Value based care programs

Clinical trial design and optimization

Comparative effectiveness studies

Risk factor identification

Curating data from clinical notes to improve RWE studies

A comparative methods pilot study

Vivek Rudrapatna Assistant Professor, Department of Medicine Co-director, Center for Real-World Evidence University of California, San Francisco

Disclosures

- Research grants to UCSF:
 - Janssen, Merck, Takeda, Genentech, Stryker, Blueprint Medicines, Mitsubishi Tanabe, Alnylam
- Shareholder:
 - ZebraMD
- I am not an employee or consultant of Mendel AI

Background

- Electronic health records data have significant potential to support studies of treatment effectiveness, safety, and value
 - Contain detailed information about patients, treatments, and outcomes
 - Can help identify cohorts, control confounding, estimate causal effects
- But...there's a catch
 - Much of the data needed for real-world evidence studies is unstructured
- Computational methods are needed to accurately structure these data for downstream research

GPT-4 (OpenAI)

State-of-the art on many clinical language inference tasks

- Incl. information extraction from clinical notes
- However, there are limitations:
 - GPT-4 is (probably) trained on general-purpose text
 - May not be sufficiently educated on technical domains like medicine
 - Greater risk of inaccuracies ("hallucinations")
 - GPT-4 is a closed model, hidden behind an API endpoint in the cloud
 - Privacy, security concerns
 - Cost concerns¹
 - No transparency, interpretability, explainability
 - Potentially prone to algorithmic bias²

- 1. Yim and Rudrapatna, medRxiv, 2024
- 2. Zack et al, Lancet Dig Health, 2024

Hypercube (Mendel AI)

- A neuro-symbolic reasoning system built for clinical data
 - Utilizes structured medical knowledge (ontologies)
 - Modularizable
 - Auditable
 - Potentially faster run-time and lower inference cost
 - Can identify cohorts, ascertain outcomes in a no-code format
- Not as well known as a clinical data science tool outside of oncology

Objective

- To compare GPT-4 and Mendel on cohort retrieval tasks to support clinical studies
 - Use cases: Inflammatory Bowel Disease, Pancreatic Cancer
 - Target variables:
 - Confounders and outcomes
 - Incl. patient reported outcomes (PROs)
 - Treatment exposures

Methods

- We provided Mendel with annotated notes + annotation protocols
 - IBD PROs (300 labels each, binary)
 - Abdominal Pain
 - Diarrhea
 - Rectal Bleeding
 - IBD Medication History (150 labels each, binary)
 - Previously completed/discontinued treatments
 - Current treatments
 - Planned future treatment
 - IBD disease complications (20 notes, binary)
 - · History of a fistula, stricture, bowel resection, ostomy
- Inter-annotator agreement > 90% for all tasks

Methods

- Pancreatic Cancer (20 labels for each)
 - Stage (TNM)
 - Genetic/Genomic testing, results
 - Prior treatments
- Developed a question bank for cohort retrieval designed to test set consistency of retrieved cohorts
 - Synonymy: Do synonymous questions retrieve identical cohorts?
 - Subsumption: Are specific cohorts subsets of more general ones?
 - For example: patients with lung cancer should be a subset of patients with cancer
- Patient charts underwent automated retrieval using GPT-4, Hypercube
 - GPT-4: Full context prompting for retrieval, theoretic limit of performance
 - Hypercube: Prompting with symbolic query language
- MEA on gold annotations still underway

Preliminary Results: Subsumption

Retrieval question			Hypercube	GPT-4		
Top-level category	Lower category	Answers	Answers not in parent	Answers	Answers not in parent	
	Show me patients with IBD					
Show me patients with IBD that have	that have been treated					
been treated with a biological therapy	with an anti-TNF drug	211	0	226	3	
	Show me patients with IBD					
Show me patients with IBD that have	that have been treated					
been treated with a biological therapy	with an anti-integrin drug	67	0	72	1	
	Show me patients with IBD					
	that have been treated					
Show me patients with IBD that have	with anti-interleukin					
been treated with a biological therapy	therapy	53	0	81	1	

Preliminary Results: Synonymy

Retrieval question			Hypercube	GPT-4			
Generalized Question	Expanded Question	Answers for both	Set difference	Answers for both	In general but not expanded	In expanded but not general	
Show me patients with IBD that have been treated with a biological therapy	Show me patients with IBD that have been treated with Infliximab or Adalimumab or Certolizumab or Golimumab or Vedolizumab or natalizumab or risankizumab or ustekinumab	234	0	237	7	3	
Show me patients with IBD that have been treated with a JAK inhibitor	Show me patients with IBD that have been treated with Tofacitinib or Upadacitinib	10	0	9	2	1	
Show me patients with IBD that have been treated with an anti-TNF drug	Show me patients with IBD that have been treated with Infliximab or Adalimumab or Certolizumab or Golimumab	211	0	194	32*	3	
Show me patients with IBD that have been treated with an anti-integrin drug	Show me patients with IBD that have been treated with Vedolizumab or natalizumab	67	0	60	12*	2	
Show me patients with IBD that have been treated with anti-interleukin therapy	Show me patients with IBD that have been treated with risankizumab or ustekinumab	53	0	40	41*	0	

Preliminary Results: Set composition

Set composition			Hypercube				
	Composed child	Answers in	Answers in		Answers in	Answers in	
Parent category	categories	parent	children	Difference	parent	children	Difference
	Show me patients with						
	IBD that have been						
Show me natients with IBD	treated with an anti-TNF						
that have been treated with a	drug OR an anti-integrin						
	uluy OK all allu-						
biological therapy	interleukin therapy	234	234	0	244	249	5

Discussion

- Both models achieved similar performance across a wide range of clinical domains and target tasks
 Very simple questions: what happens as they become more complex?
- Potential advantages to the Mendel system:
 - Lower cost/computational burden
 - Greater transparency
 - Set closure
 - Use of ontologies -> can incorporate new medical knowledge
- Potential advantages to GPT, other GenAI models:
 - Extremely well-tested across domains
 - Potentially more versatile
 - Question answering, summarization
 - Potential for multimodal inference
 - E.g. obtain clinical endpoints from images, waveforms, etc.

Conclusion

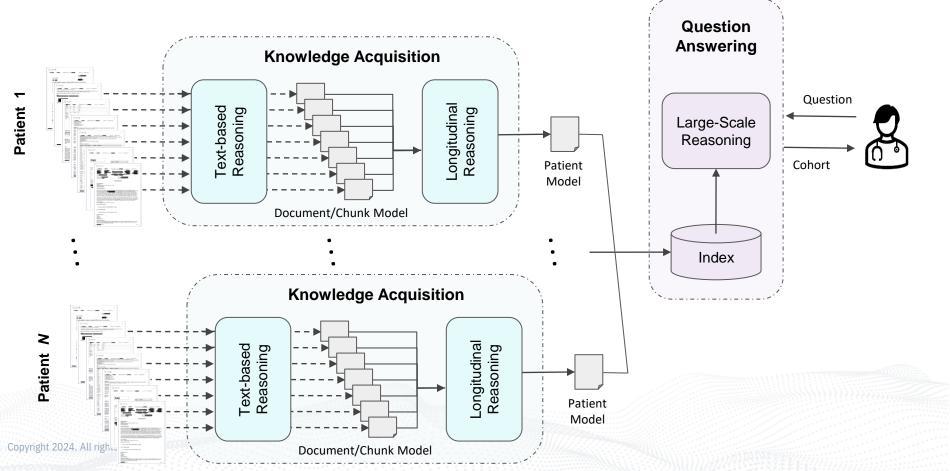
- GPT-4 and Hypercube appear to have similar accuracy on information extraction for at least two use cases
- Future work is needed to
 - More rigorously compare these models + other open source comparators
 - Enhance their accuracy to meet (or exceed) human annotators
 - Apply them to enable higher quality RWE studies

Automatic Cohort Retrieval (ACR)

Wael Salloum, PhD

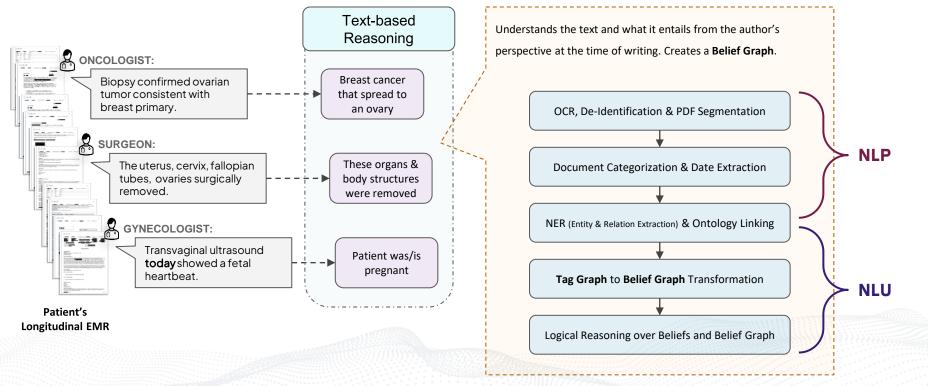
Copyright 2024. All rights reserved

23

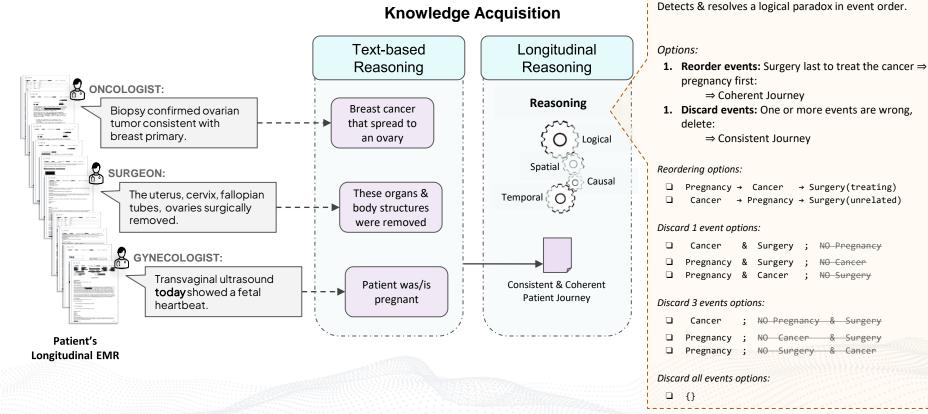


Topics

- 1. Read: Text-based Reasoning
 - NLP/NLU on free text; produces normalized facts mapped to standard ontologies
- 2. Resolve: Longitudinal Reasoning
 - Reasoning across facts over time to build a consolidated patient's journey
- 3. Hypercube: Large-Scale Reasoning
 - Cohort selection & question answering over those patient journeys

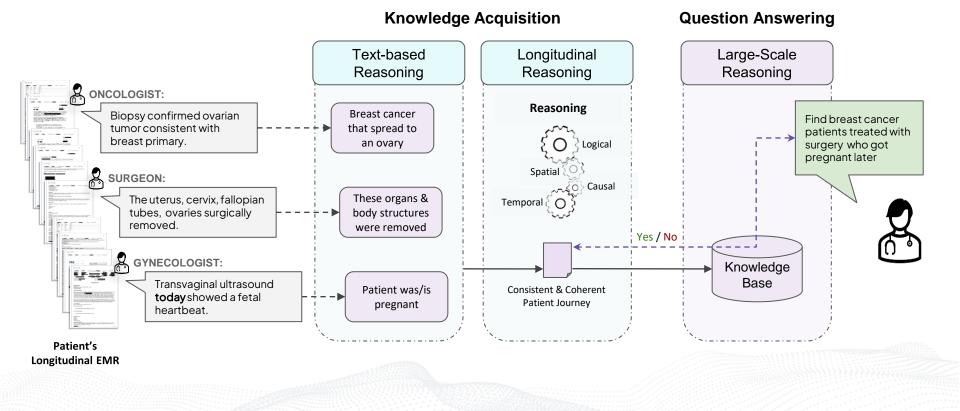

Automatic Cohort Retrieval (ACR)

Example: Text-based Reasoning


Knowledge Acquisition

Copyright 2024. All rights reserved

Example: Longitudinal Reasoning



Copyright 2024. All rights reserved

Example: Large-Scale Reasoning

Example: Knowledge Consolidation from individual facts

Facts about this patient scattered across different documents: Right breast cancer, stage IV Lobular carcinoma in situ Read • Right breast cancer, stage IV Infiltrating lobular carcinoma HR+ ductal carcinoma, 2022 Ductal carcinoma in situ, Grade 1 Luminal A breast carcinoma Infiltrating lobular carcinoma Luminal A breast carcinoma **Ouestions** that cannot be answered without consolidation (No single fact has all the required information): HR+ ductal Hypercube carcinoma, 2022 Metastatic ductal carcinoma X X Lobular carcinoma Her2-negative lobular carcinoma . in situ X ER/PR+, early grade, breast cancer . Ductal carcinoma in Unilateral Luminal A breast cancer X situ, Grade 1

Copyright 2024. All rights reserved

∧ MENDEL

Example: Knowledge Consolidation from individual facts

Example: Knowledge Consolidation from individual facts

Facts about this patient scattered across different documents:

- Right breast cancer, stage IV
- Lobular carcinoma in situ
- Infiltrating lobular carcinoma

Ductal carcinoma in situ, Grade 1

- HR+ ductal carcinoma, 2022
- Luminal A breast carcinoma

Hypercube

Questions that cannot be answered without consolidation (No single fact has all the required information):

- Metastatic ductal carcinoma
- Her2-negative lobular carcinoma
- ER/PR+, early grade, breast cancer
- Unilateral Luminal A breast cancer

Biomarkers: ER/PR+ HER2- (Luminal A) Primary Site: Breast Primary Site Laterality: Right Morphology: Ductal Carcinoma Differentiation: Grade 1 (Well Differentiated) Stage Group: Stage IV Date of Diagnosis: 2022

Primary Site: Breast Morphology: Infiltrating lobular carcinoma

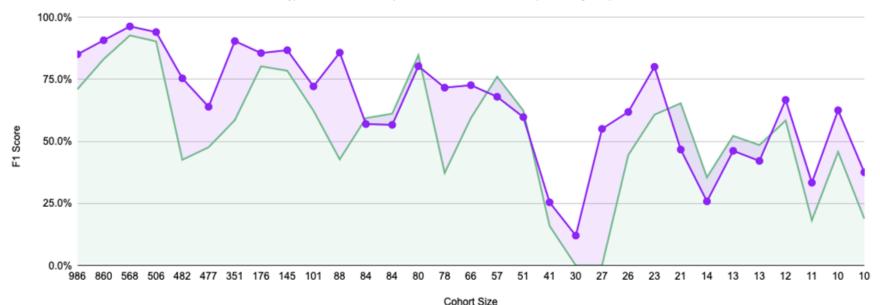
Copyright 2024. All rights reserve

Evaluation set

Human-abstracted Gold Set:

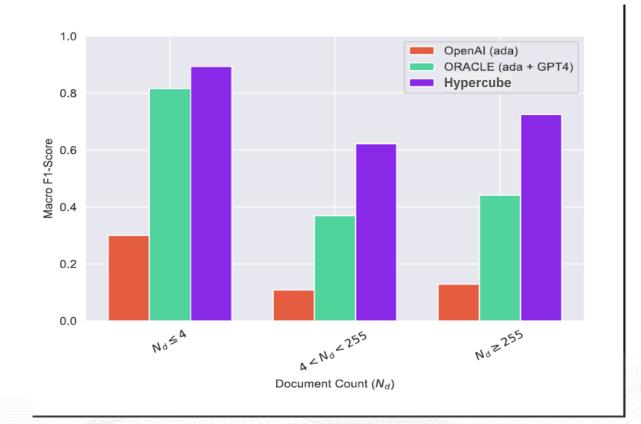
- **1,436 patients** from 4 sites
- 91K documents
- 10 of the top 14 cancer types included
- Average age at diagnosis, 64 years
- Random sample from contributing sites biased toward breast cancers (40% of patients with malignancy) and toward solid tumors

Large-Scale Reasoning: Evaluation

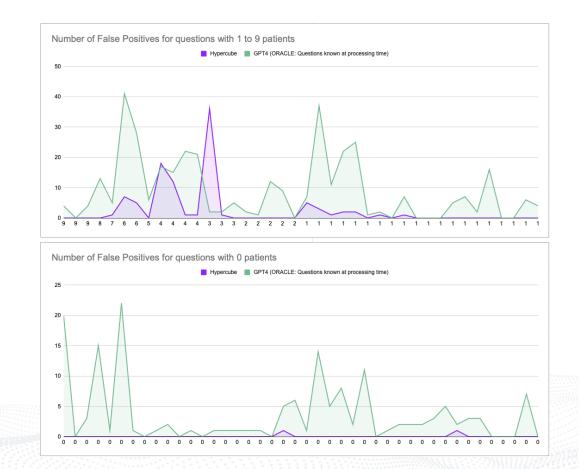

Evaluate on four dimensions:

- 1. System's Quality
- 2. Effect of Longitudinality on Quality
- 3. System's Hallucinations Tendencies
- 4. System's Set Theoretic Consistency

Large-Scale Reasoning: Quality


F1 Scores for questions where gold support >= 10 patients

Hypercube 🛛 GPT4 (ORACLE: Questions known at processing time)



Large-Scale Reasoning: Longitudinality

Large-Scale Reasoning: Hallucinations

Copyright 2024. All rights reserved

Large-Scale Reasoning: Set Theoretic Consistency

Questions			# HC Answers	# HC Answers NOT in Parent Q	# GPT Answers	# GPT Answers NOT in Parent Q
Find r	me patients with breast cancer	568	531		613	
	breast cancer patients with carcinoma	506	492	0	547	22
	breast cancer patients who received a breast cancer chemo except tamoxifin	351	375	0	196	10
	Early stage breast cancer patients treated surgically other than mastectomies.	41	77	0	298	13
Find	Image: model of the patients receiving systemic therapy Find me patients receiving targeted therapy		1324 776 102	0	651 181 64	36
	Find me patients treated with a TKI Find me patients treated with an EGFR TKI	57 23	32	0	33	12
	Find me patients treated with osimertinib	9	9	0	12	2
	Find me patients treated with RxCUI code 1721560	9	9	0	0	0
	Find me patients treated with Tagrisso	9	9	0	13	1
	Tagrisso and any other EGFR inhibitor	4	5	0	25	18

Thank you.

Copyright 2024. All rights reserved

38