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Background
 Health economic models (HEM) are widely used to 

assess the cost-effectiveness of healthcare interventions 
and inform decision-making by policymakers and 
payers1. However, their complexity is increasing, as 
they are being used to analyze more diverse and 
detailed data sets, more complex interventions and 
patient pathways, leading to the development of 
complex analysis frameworks and sensitivity analyses2. 
This poster brings conceptual solutions to these 
computational issues and illustrates them with examples 
in MS-Excel.

 First, it is necessary understand and review the 
model concepts. Often modeling frameworks have 
requirements and inefficiencies (e.g., keeping a Markov 
trace) that can lead to computational issues(e.g., out-of-
memory execution, inefficient loops). Understanding the 
modeling framework allows to focus computation on 
effective parts.

 Second, it is necessary to understand the implemented 
algorithm, the language, its intricacies, environment and 
limitations. For instance, Visual Basic for Applications 
(VBA) code inherits from Excel user-interface features 
that slow down data processing and can be removed. 
VBA code is weakly typed, and its type-determination 
is sometimes problematic, with issues arising “far” from 
where the initial code is. A common challenge is volatile 
functions, functions in which the value changes each 
time the cell is calculated (e.g., OFFSET, INDIRECT, 
CELL, SUMIF).

 Once the framework is appropriate and the code 
optimized, a third step is to increase the computing 
power available for the model. Even without code 
parallelization, the variety of powerful processors 
available in commercial cloud offerings makes it easy 
and cheap for HEMs to run much faster.

 Fourth, code parallelization or parallel distribution of 
tasks allow to reach linear gain in computation time for 
tasks that permit (typically: DSA and PSA).

Methods
 All tests were performed on a regular laptop and 

a server made for computationally-intensive tasks 
(specifications in Table 1). Both run MS-Windows 10 
Enterprise 64 bits, MS-Excel 365 MSO (Version 2208 
Build 16.0.15601.20526) 32-bit and R (4.1.1, 64-bit).

 In Experiment 1, we run a multi-way DSA from a 
Markov model for Multiple Sclerosis, 2,880 iterations 
in a XLSM file.

 First with a naïve code implementation
 Then with optimizations in the Markov trace 

(“OptimizedHE”) and in the VBA code (reducing 
volatile functions, removing any screen interactions, 
… “OptimizedHE&VBA”)

 Finally, by splitting the task into 6 jobs on 6 Excel 
instances managed by R (on the server only)

 In Experiment 2, we run a PSA from a Markov model for 
oncology, 10,000 iterations in a XLSM file.

 In Experiment 3, we open an XLSB file with 1,000+ 
volatile OFFSET() function

 All experiments are run on a freshly started system 
with no other user software running and background 
processes reduced to a minimum (e.g., OneDrive 
synchronization stopped).

Conclusions
 Our benchmarks show a ~2-20 times acceleration 

depending on the task, when applying model 
optimization, VBA code optimization and/or switch to a 
computing server.

 On a regular laptop, optimizing both the HE model and 
the VBA code can cut the runtime duration of a multi-
way DSA by a factor ~20

 Switching from a regular laptop to a computing server 
can cut the runtime duration of a multi-way DSA or a 
PSA by a factor ~1.7

 Executing parts of a multi-way DSA or a PSA in parallel 
on cores available on a computing server can nearly 
linearly accelerate the runtime

 Volatile functions and optimized Excel VBA code don’t 
take advantage of a non-parallel computing server
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ABBREVIATIONS
DSA: deterministic sensitivity analysis; GPU: graphical processing 
unit; PSA: probabilistic sensitivity analysis; RAM: random-access 
memory; SSD: solid-state drive hard disk
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Experiment 3 (opening XLSB with volatile functions)
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Experiment 2 (PSA, 10,000 iterations)
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Experiment 1 (Multi-way DSA, 2,880 iterations)

Code optimizations:
Acceleration factor 1:23Laptop server:

Acceleration factor 1:1.8

Laptop  server:
Acceleration factor 1:1.7

Table 1. Test machines specifications

Category Laptop (2021) Server (2022)
CPU Intel Core i5 8365U Intel Xeon Platinum 8370C

Base frequency 1.6 GHz 2.8 GHz

# cores 4 64

# threads 8 128

RAM 16 Gb 64 Gb

Hard disk SSD SSD

GPU UHD Graphics 620 N.A.

Windows Geekbench.com 5 single-core score 823 1,191

Windows Geekbench.com 5 multi-core score 2,591 38,967


