
© 2023 Parexel International (MA) Corporation.

Parexel International
2520 Meridian Pkwy
Durham, NC 27713, USA
+1 919 544-3170
www.parexel.com

Making health economic models more efficient in
dealing with contemporary complexities

JE. Poirrier1, J. Maervoet1,
R. Bergemann2

1Parexel, HEOR Modeling, Wavre, WBR, Belgium;
2Parexel International, Basel, Switzerland

Background
 Health economic models (HEM) are widely used to

assess the cost-effectiveness of healthcare interventions
and inform decision-making by policymakers and
payers1. However, their complexity is increasing, as
they are being used to analyze more diverse and
detailed data sets, more complex interventions and
patient pathways, leading to the development of
complex analysis frameworks and sensitivity analyses2.
This poster brings conceptual solutions to these
computational issues and illustrates them with examples
in MS-Excel.

 First, it is necessary understand and review the
model concepts. Often modeling frameworks have
requirements and inefficiencies (e.g., keeping a Markov
trace) that can lead to computational issues(e.g., out-of-
memory execution, inefficient loops). Understanding the
modeling framework allows to focus computation on
effective parts.

 Second, it is necessary to understand the implemented
algorithm, the language, its intricacies, environment and
limitations. For instance, Visual Basic for Applications
(VBA) code inherits from Excel user-interface features
that slow down data processing and can be removed.
VBA code is weakly typed, and its type-determination
is sometimes problematic, with issues arising “far” from
where the initial code is. A common challenge is volatile
functions, functions in which the value changes each
time the cell is calculated (e.g., OFFSET, INDIRECT,
CELL, SUMIF).

 Once the framework is appropriate and the code
optimized, a third step is to increase the computing
power available for the model. Even without code
parallelization, the variety of powerful processors
available in commercial cloud offerings makes it easy
and cheap for HEMs to run much faster.

 Fourth, code parallelization or parallel distribution of
tasks allow to reach linear gain in computation time for
tasks that permit (typically: DSA and PSA).

Methods
 All tests were performed on a regular laptop and

a server made for computationally-intensive tasks
(specifications in Table 1). Both run MS-Windows 10
Enterprise 64 bits, MS-Excel 365 MSO (Version 2208
Build 16.0.15601.20526) 32-bit and R (4.1.1, 64-bit).

 In Experiment 1, we run a multi-way DSA from a
Markov model for Multiple Sclerosis, 2,880 iterations
in a XLSM file.

 First with a naïve code implementation
 Then with optimizations in the Markov trace

(“OptimizedHE”) and in the VBA code (reducing
volatile functions, removing any screen interactions,
… “OptimizedHE&VBA”)

 Finally, by splitting the task into 6 jobs on 6 Excel
instances managed by R (on the server only)

 In Experiment 2, we run a PSA from a Markov model for
oncology, 10,000 iterations in a XLSM file.

 In Experiment 3, we open an XLSB file with 1,000+
volatile OFFSET() function

 All experiments are run on a freshly started system
with no other user software running and background
processes reduced to a minimum (e.g., OneDrive
synchronization stopped).

Conclusions
 Our benchmarks show a ~2-20 times acceleration

depending on the task, when applying model
optimization, VBA code optimization and/or switch to a
computing server.

 On a regular laptop, optimizing both the HE model and
the VBA code can cut the runtime duration of a multi-
way DSA by a factor ~20

 Switching from a regular laptop to a computing server
can cut the runtime duration of a multi-way DSA or a
PSA by a factor ~1.7

 Executing parts of a multi-way DSA or a PSA in parallel
on cores available on a computing server can nearly
linearly accelerate the runtime

 Volatile functions and optimized Excel VBA code don’t
take advantage of a non-parallel computing server

MSR85

ABBREVIATIONS
DSA: deterministic sensitivity analysis; GPU: graphical processing
unit; PSA: probabilistic sensitivity analysis; RAM: random-access
memory; SSD: solid-state drive hard disk

REFERENCES
1 Hollman et al., 2017 (10.1007/s40273-017-0510-8)
2 Incerti et al., 2019 (10.1016/j.jval.2019.01.003)

4.417

7.633

0

2

4

6

8

Laptop Server
Platform

Ru
nt

im
e

du
ra

tio
n

(m
in

ut
es

)

Platform
Laptop

Server

Experiment 3 (opening XLSB with volatile functions)

110.36

66.6

0

30

60

90

Laptop Server
Platform

Ru
nt

im
e

du
ra

tio
n

(m
in

ut
es

)

Platform
Laptop

Server

Experiment 2 (PSA, 10,000 iterations)

1164

648

152

703

414

103

50
93 26

0

300

600

900

1200

Naïve Optimized HE Optimized HE&VBA

Code implementation

Ru
nt

im
e

du
ra

tio
n

(m
in

ut
es

)

Platform
Laptop

Server

Server Parallel

Experiment 1 (Multi-way DSA, 2,880 iterations)

Code optimizations:
Acceleration factor 1:23Laptop server:

Acceleration factor 1:1.8

Laptop server:
Acceleration factor 1:1.7

Table 1. Test machines specifications

Category Laptop (2021) Server (2022)
CPU Intel Core i5 8365U Intel Xeon Platinum 8370C

Base frequency 1.6 GHz 2.8 GHz

cores 4 64

threads 8 128

RAM 16 Gb 64 Gb

Hard disk SSD SSD

GPU UHD Graphics 620 N.A.

Windows Geekbench.com 5 single-core score 823 1,191

Windows Geekbench.com 5 multi-core score 2,591 38,967

