Generalization of the Effectiveness of Baricitinib 4mg among bDMARD-IR Rheumatoid Arthritis Patients from a RCT to a Real-world Population in China

 $\label{eq:linear_state} Jiang~N^1,~Li~M^1,~Wang~Y^2,~Zhao~J^1,~Tian~X^1,~Zhu~H^3,~Li~J^3,~Xu~J^3,~Zhang~Y^3,~Zeng~X^1~*$

¹Department of Rheumatology and Clinical Immunology, Peking Union Medical College Hospital (PUMCH), Chinese Academy of Medical Sciences & Peking Union Medical College; National Clinical Research Center for Dermatologic and Immunologic Diseases (NCRC-DID), Ministry of Science & Technology; State Key Laboratory of Complex Severe and Rare Diseases; Key Laboratory of Rheumatology and Clinical Immunology, Ministry of Education, Beijing, China;

²Department of Epidemiology and Biostatistics, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China;

³Eli Lilly and Company, Shanghai, China

*Corresponding author, xiaofeng.zeng@cstar.org.cn

Background

- Rheumatoid arthritis (RA) is a chronic autoimmune disease characterized by inflammation and joint destruction associated with pain, progressive disability, systemic comorbidities and early death¹.
- Baricitinib is an oral selective Janus kinase (JAK) inhibitor (JAK1/JAK2) ² approved for the treatment of patients with moderate to severe active RA in China.
- Baricitinib 4mg was approved in China for 1) TNFi-IR RA patients or 2) cDMARDs-IR RA patients with inadequate response to baricitinib 2mg for at least 3 months.
- Although randomized controlled trials (RCT) have demonstrated the efficacy of baricitinib 4mg, the generalizability of trial results to Chinese RA patients may be questioned since RCTs lack "external validity".
- The rationale of the current study is to generate weights and generalize the efficacy results from the RA-BEACON³ (phase III RCT) of baricitinib 4mg in bDMARDs-IR RA patients to a local Chinese RA population (CREDIT) ⁴ using reweighting approach.

Objectives

- To generalize the effectiveness of baricitinib 4mg once daily in Chinese bDMARD-IR RA patients from the phase III RCT to a "real-world" population using the reweighting approach.
 - ➤ Weights at baseline for RA-BEACON IPD and CREDIT data
 - ➤ Generalized effectiveness of baricitinib 4mg versus placebo by ACR20, ACR20 and ACR70 at Week 12
 - ➤ Generalized effectiveness of baricitinib 4mg versus placebo by change from baseline to Week 12 in HAQ-DI, DAS28-hsCRP, DAS28-ESR, CDAI and SDAI scores.

Methods

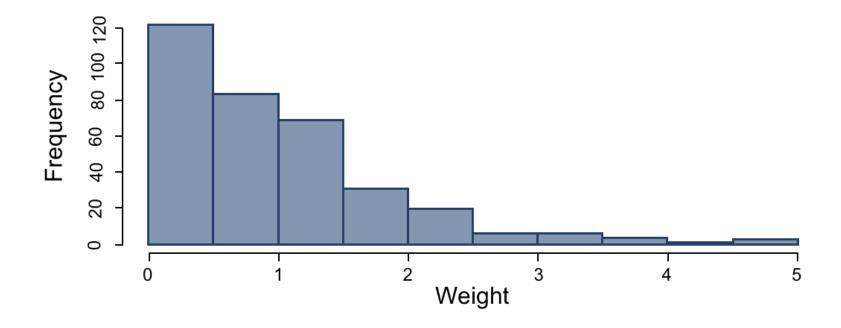
■ **Study Design**: This study was a post hoc retrospective analysis using individual patient data (IPD) from the RA-BEACON trial and aggregated data from the CREDIT registry to explore the generalizability of RA-BEACON results to moderate-to-severe RA patients in China

■ Key Inclusion Criteria:

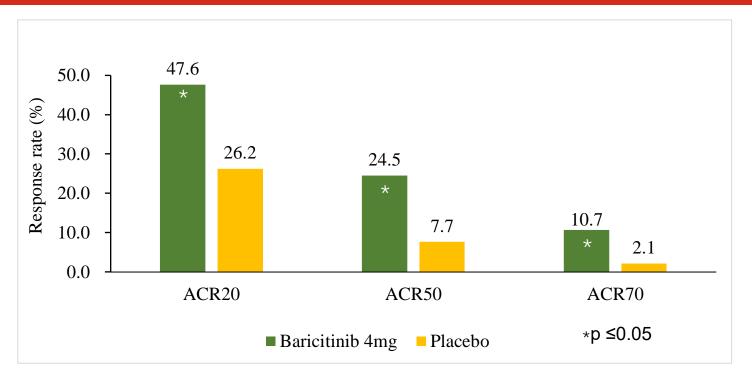
- □ RA-BEACON
 - ➤ Age≥18 with moderate to severely active RA
 - > Insufficient response or intolerance to previous TNFi treatment
- □ CREDIT
 - ➤ Registered from 1 January 2016 to 1 July 2021.
 - ➤ Age≥18 with active RA
 - ➤ Insufficient response to ≥1 bDMARDs

Methods

■ Statistical Analysis

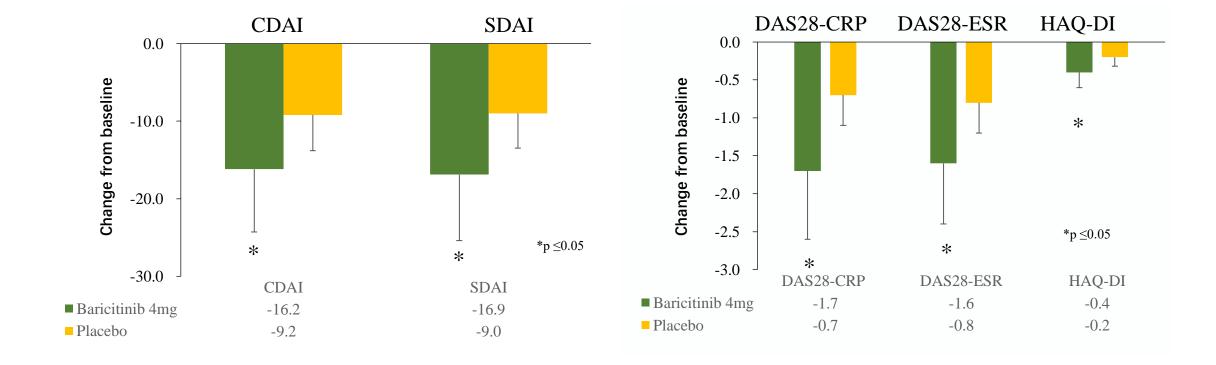

- Weights were calculated using IPD from the RA-BEACON trial (phase III RCT, bDMARD-IR patients) and AGR from CREDIT registry in China by generalized method of moments
 - ➤ Generalized method of moments is an optimization algorithm subject to the constraints of the first moment equality between selected covariates from both populations
 - o Match IPD to AGR with respect to covariates including gender, age, RF/ACPA, ESR, CDAI and CRP
 - o Balance achieved after reweighting so as to generalize the effectiveness of baricitinib 4mg versus placebo to the real-world population
- Weighted Logistic regression was used to evaluate binary effectiveness indicators including ACR20, ACR50 and ACR70
- Weighted covariance analysis was used to evaluate continuous effectiveness indicators including CDAI, SDAI, DAS28-ESR, DAS28-CRP and HAQ-DI scores
- Sandwich estimators were utilized for evaluating p-values and 95% CIs of odds ratio and LSM from weighted analyses.

Results: Baseline characteristics matched for reweighting. Non-missing IPD of 343 patients from RA-BEACON were matched to a corresponding CREDIT population of 1006. Balance was achieved after reweighting with respect to covariates including gender, age, RF/ACPA, ESR, CDAI and CRP.

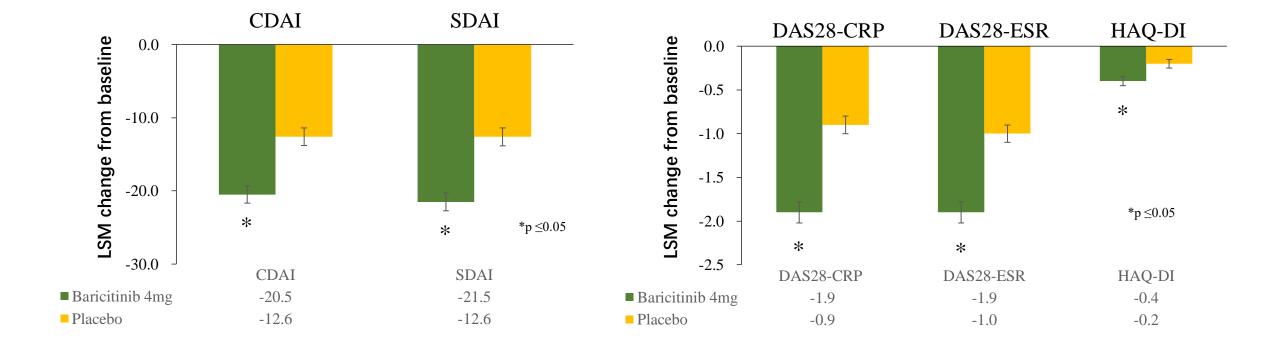

Baseline covariates matched on				
Covariate	RA-BEACON / Pre-Match/(N=343)	RA-BEACON / Post-Match/(N=193.8*)	CREDIT (N=1006)	
Gender (Female)	83.1% (285)	80.5% (156)	80.5% (809)	
Age	56.2±10.9	52.5±11.8	52.5±12.5	
RF/ACPA Positive [Y]§	79.0% (271)	97.3% (189)	97.3% (979)	
ESR	47.6±25.0	48.0±25.5	48.0±51.0	
CDAI	40.5±13.2	33.6±12.0	33.6±16.0	
CRP	20.1±24.8	17.4±19.1	17.4±40.7	

^{*}The Post-Match population (N=193.8) is the effective sample size (ESS), indicating number of patients actually contributing to the analysis based on the size of weights. \$The covariate "RF/ACPA Positive" turns to Y(yes) if the patient has positive RF/positive ACPA/both positive.

Results: Weight distribution. Obtained by generalized method of moments that matches IPD to AGR, weights are smoothly distributed without extreme values.



Results: Higher response rates were observed in weighted ACR20 (47.6% vs 26.2%), ACR50 (24.5% vs 7.7%) and ACR70 (10.7% vs 2.1%) scores in patients from the baricitinib 4mg arm compared to the placebo arm at Week 12 (p \leq 0.05 for all outcomes). Difference in response rate and odds ratios between arms was evaluated.



Bari 4 mg vs PBO	ACR20	ACR50	ACR70
Difference in response rate (95% CI)	21.4(11.4,31.3)	16.9(9.3,24.4)	8.5(3.4,13.6)
Odds ratios	2.7(1.5,4.9)	4.3(2.0,9.4)	5.6(1.5,21.7)
P-values	< 0.01	< 0.01	0.01

Results: Statistically significant improvements in reweighted CDAI (-16.2 vs -9.2), SDAI (-16.9 vs -9.0), DAS28-CRP (-1.7 vs -0.7), DAS28-ESR (-1.6 vs -0.8) and HAQ-DI (-0.4 vs -0.2) were observed in patients from the baricitinib 4mg arm compared to the placebo arm (p \leq 0.05 for all outcomes) at Week 12.

Results: From analysis of covariance with weights (ANCOVA), statistically significant improvements in continuous endpoints(CDAI, SDAI, DAS28-CRP, DAS28-ESR and HAQ-DI) were also observed in patients from the baricitinib 4mg arm compared to the placebo arm ($p \le 0.05$ for all outcomes) at Week 12.

Conclusions

- Comparable outcomes were observed between the original and reweighted population, indicating the generalizability of efficacy results from the RA-BEACON trial population to the real-world Chinese RA population.
- This study provided evidence for the effectiveness of baricitinib 4mg for the treatment of Chinese bDMARD-IR RA patients.

Disclosures

- •Jiang N, Li M, Wang Y, Zhao J, Tian X, Zeng X have been investigators of this study; Zhu H, Li J, Xu J, Zhang Y are employees Eli Lilly and Company.
- •This study was sponsored by Eli Lilly and Company.

Abbreviation

ACR: American College of Rheumatology; ACPA: Anti-cyclic Citrullinated Peptides Antibodies; AGR: Aggregated Real-world data; bDMARD: Biologic Disease-modifying Antirheumatic Drug; bDMARD-IR: Biologic Disease-modifying Antirheumatic Drug:Inadequate Response; CDAI: Clinical Disease Activity Index; CI: Confidence interval; CREDIT: Chinese Registry of Rheumatoid Arthritis; CRP: C-reactive Protein; cDMARDs: Conventional Disease-Modifying Antirheumatic Drugs; csDMARD: Conventional Synthetic Disease-modifying Antirheumatic Drug; DAS28: Disease Activity Score with 28-Joint; ESR: Erythrocyte Sedimentation Rate; HAQ-DI:Health Assessment Questionnaire-disability Index; IPD: Individual Patient Data; JAK: Janus kinase; LSM: Least Square Mean; NRI: non-response imputation; PBO: Placebo; RA: rheumatoid arthritis; RCT: Randomized Controlled Trials; RF: Rheumatoid Factor; SDAI: Simplified Disease Activity Index; TNFi: Tumor Necrosis Factor Inhibitor

References

- 1. Gras J. Drugs Today (Barc). 2016; 52:543-550.
- 2. Fridman JS, et al. J Immuniol. 2010; 184:5298-5307.
- 3. Genovese MC, et al. N Engl J Med. 2016;374:1243–1252.
- 4. Jin, S., et al,. Arthritis research & therapy, 2017. 19(1): p. 251