Background

Trial results may not be generalizable to target populations treated in clinical trials with different distributions of baseline characteristics that modify the treatment effect.

Objective

To predict treatment effects in Medicare populations, using outcome models developed with trial data.

Methods

- Data sources:
 - Trial population: the Randomized Evaluation of Long-Term Anticoagulation Therapy (RE-LY) trial.
 - Target population: Medicare fee-for-service claims database.
- Study population:
 - Trial population: participants with atrial fibrillation and at least one of the following characteristics: aged ≥75 years, with previous stroke or transient ischemic attack, an LVEF <40%, NYHA class II or higher heart failure symptoms; or aged 64-77 years with diabetes, hypertension, or coronary artery disease.
 - Target population: RE-LY-trial eligible Medicare beneficiaries treated with dabigatran or warfarin.
- Exposures:
 - Trial population: 1:1 random assignment of dabigatran 150mg or warfarin.
 - Target population: counterfactual assignment of dabigatran 150mg or warfarin.
- Predictors: Age, sex, race, CHADS2 score, 10 comorbidities, and 24 concomitant medications based on subject knowledge and availability in both the trial and Medicare data.

Results

- Baseline characteristics (Table 1): The trial and early target populations had similar mean (SD) CHADS2 scores (2.15 [1.13] vs. 2.15 [0.91]) but different mean ages (71 vs. 71 years). The early and extended time target populations had a similar distribution of baseline characteristics.
- Predicted results in the trial vs. early and extended-time target populations (Table 2): compared with RE-LY, the early target population had a similar predicted benefit of dabigatran vs. warfarin for stroke/SE (trial RR=0.63; 95% CI=0.50 to 0.76, target RR=0.73; 0.63 to 0.82) and risks for major bleeding and all-cause death. The extended-time target population showed similar results.
- Predicted vs. observed results in the extended target population (Table 3): compared with the predicted results, the observed results from the RWE study in the same population showed a similar benefit of dabigatran vs. warfarin for stroke/SE (SDa=0.67), and greater benefits for major bleeding (SDa=3.60) and all-cause death (SDa=2.21).

Statistical Analysis

- Missing data: No missing values for candidate outcomes considered for outcome models except for one trial participant with multiple variables missing.
- Model derivation and validation:
 - Fitted Cox proportional hazards models separately within each treatment arm for each outcome.
 - Selected variables through the relaxed LASSO, including the CHADS2 score and age, regardless of LASSO selection.
 - Measured model performance via Harrell's C-index (discrimination) and calibration slope, with correction for optimism using bootstrap resampling.
- Prediction:
 - Applied models to predict the 2-year probabilities of outcomes based on the observed distributions of baseline characteristics in the target populations.
 - Obtained risks by averaging the predicted probabilities of the outcomes for each treatment (Riskdabigatran and Riskwarfarin).
 - Calculated risk ratios (RRs = Riskdabigatran/Riskwarfarin).
 - Made inferences based on the nonparametric bootstrap resampling (percentile-based 95% confidence intervals).
- Estimation of the observed effects of dabigatran vs. warfarin in the extended time window target population:
 - Adjusted for confounding by 1:1 propensity score matching. Estimated 2-year RRs with 95% CIs in the matched population, assuming that the observed rate of events while on treatment would remain constant over two years of follow-up.

Funding

Dr. Shin is supported by the Division of Epidemiology and Pharmacoepidemiology, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School. Dr. Najafzadeh was supported by research grants from the National Institutes of Aging (ROI AG060666). Dr. Wang was supported by research grants NIA I01 AG064495, NIHLB I01 HL115945, and NIA I01 AG064495. Dr. Schneeweis was supported by NIA HL101495 and NIA MOS 50938. Dr. Kim is supported by K24 M013747 from NIA.

Acknowledgments

This publication is based on research using data from data contributors Boehringer Ingelheim that has been made available through Vivli, Inc. Vivli has not contributed to or approved, and is not in any way responsible for, the contents of this publication.