

The Utility of “Single Exposure” versus Causal Architecture Approaches in Real-World Research

Andy Osterland, PharmD, MS; Joseph T. Dye, PhD; Srinivas Annavarapu, MBBS; Amy K. O’Sullivan, PhD, E. Susan Amirian, PhD
Ontada, Irving, TX, USA

Introduction

- Over recent decades, epidemiologic methodology has evolved substantially to encompass a gamut of techniques for focalizing on the most unbiased effect estimate of a single exposure (e.g., a treatment effect).
- By contrast, less attention has been paid to the refinement of study designs and analytic techniques intended to encompass the underlying milieu of clinical, environmental, and social determinants that interactively influence disease risk or outcomes.
- Single exposure approaches have been criticized as being reductionist and have long been debated in the broader epidemiologic community, despite the utility of this approach in optimizing internal validity.¹⁻²
- Further, the gap between clinical trial efficacy and real-world (RW) effectiveness remains a concern for both regulatory entities and payers, though this gap may be partly attributable to varying prevalences of important effect modifiers between trial and RW patient populations.
- The objectives of this study are to (1) define single exposure and causal architecture approaches, and (2) delineate key considerations for using each approach based on the overarching research question.

Study Criteria
Greater variability in:
➤ Severity of underlying condition
➤ Use of concomitant medications
➤ Presence of comorbidities

Variables
Enhanced data capture:
➤ Social determinants of health
➤ Access and cost of care

Analysis
Causal relationships explored using:
➤ Directed acyclic graphs
➤ Mediation analysis

Single Exposure Approach in Real-World Research

- ✓ “Is an exposure (e.g., treatment, risk factor) associated with outcomes with/without controlling for confounders?”
- ✓ “Does the exposure interact with other factors to impact outcomes?”
- ✓ “What are the mechanisms through which an exposure works?”

[adapted from Keyes and Galea, 2017⁴]

Case Study 1³ Case Study 2⁴ Case Study 3⁵

Tumor Type, Outcome(s) and Exposure(s)

• Merkel cell carcinoma (MCC)	• Multiple myeloma	• HER2+ metastatic breast cancer
• ORR, DOR, OS, PFS	• Infusion reactions	• PFS, safety
• SOC, external control arm	• Daratumumab, split/single dose	• Pertuzumab, addition to SOC

Key Findings & Implications

• Outcomes in this historical, observational cohort were poor. vs. single-arm RCT of avelumab	• Outcomes were similar from single 8-hour infusion vs. two 4-hour infusions over 2 days.	• Outcomes were consistent with those observed in clinical trial.
• Helped establish FDA approval of avelumab in 1L MCC.	• Supported label expansion for split-dosing of daratumumab.	• Expanded understanding of safety and effectiveness of approved treatment option.

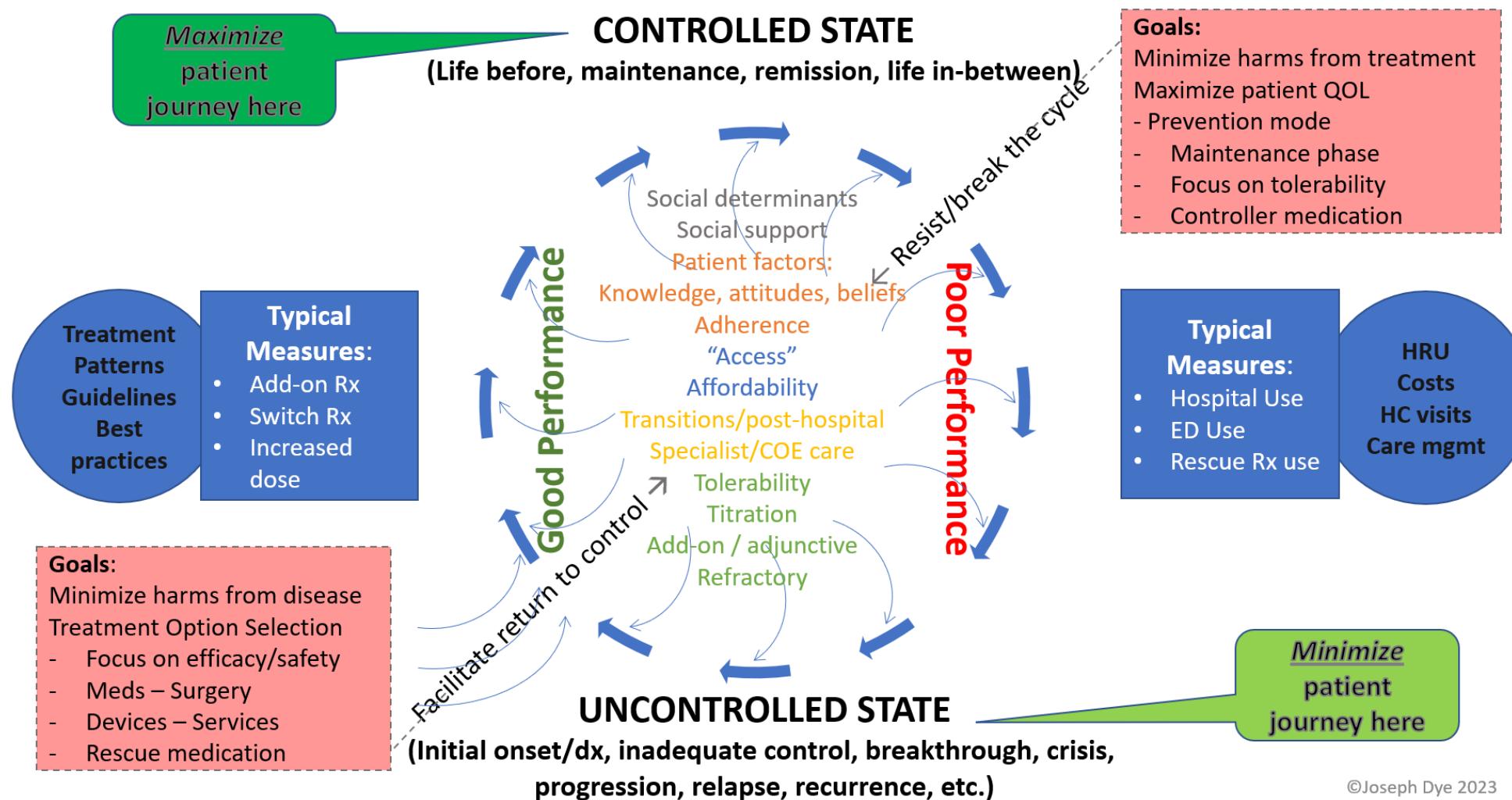
Causal Architecture Approach in Real-World Research

- ✓ “What is the structure of underlying causes of a particular state of health or disease?”
- ✓ “Do these causes work together or separately?”
- ✓ “Which causes are the most prevalent in the population?”

[adapted from Keyes and Galea, 2017⁴]

Case Study 1⁶ Case Study 2⁷ Case Study 3⁸

Tumor Type, Outcome(s) and Exposure(s)


• Triple-neg. breast cancer (TNBC)	• Breast cancer (BC)	• Oropharyngeal cancer (OPC)
• Prevalence of TNBC	• Rates of mammography	• OS, OPC-specific survival
• Census-tract ICE-Race/Income	• Scope of practice, other factors	• Smoking, SES

Key Findings & Implications

• TNBC was more prevalent in predominantly Black vs. White neighborhoods, driven by modifiable metabolic exposures.	• Racial and ethnic disparities in mammography were identified among Medicaid patients.	• Lower SES, smoking, and living in high smoking areas were associated with poorer survival.
• Can inform local cancer control and prevention efforts.	• Relaxed NP scope of practice laws were associated with improved BC screening rates.	• Supports targeting individual and contextual factors for future smoking cessation interventions.

BC=breast cancer; DOR=duration of response; ICE=index of concentration at extremes; MCC=Merkel cell carcinoma; NP=nurse practitioner; OPC=oropharyngeal cancer; ORR=objective response rate; OS=overall survival; PFS=progression-free survival; RCT=randomized controlled trial; SES=socioeconomic status; TNBC=triple-negative breast cancer

Conceptual model for chronic illness

Conclusions

A single exposure approach enables hypothesis testing in specific populations; however, results may not be generalizable and lack identification of subpopulations receiving the most or least benefit.

A causal architecture approach can identify multi-level, multi-factorial relationships to inform risk stratification approaches; however, this approach does not preclude the study of individual risk factors and dynamic causes may be difficult to measure.

While causal architecture approaches are seldom used in RW research settings, a careful examination of when each approach is fit-for-purpose can lead to the application of innovative strategies to the design and conduct of RW studies.

References & Acknowledgments

1. Keyes KM, Galea S. *Epidemiology*. 2017;28(1):1-5.
2. Poole C. *Epidemiology*. 2017;28(1):6-11.
3. Cowey CL, et al. *Future Oncol*. 2017;13(19):1699-1710.
4. Rifkin R, et al. *Clin Ther*. 2019;41(5):866-881.e7.
5. Robert NJ, et al. *Drugs Real World Outcomes*. 2017;4(1):1-7.
6. Siegel SD, et al. *Breast Cancer Res*. 2022;24(1):37.
7. Mobley LR, et al. *J Racial Ethn Health Disparities*. 2017;4(3):446-454.
8. Guo Y, et al. *Cancer Med*. 2015;4(10):1612-9.

No external funding was provided for this study. This poster was presented on May 8, 2023 at ISPOR 2023 in Boston, MA.

Questions?
Andy.Osterland@McKesson.com