

ASSESSING THE PUBLIC HEALTH IMPACT OF THE ADJUVANTED RESPIRATORY SYNCYTIAL VIRUS PREFUSION F PROTEIN VACCINE (RSVPreF3 OA) AMONG OLDER ADULTS IN THE UNITED STATES (US)

¹GSK, Wavre, Belgium; ²GSK, Philadelphia, PA, USA; ³CHESS in Health, Bonheiden, Belgium; ⁴RTI Health Solutions, Research Triangle Park, NC, USA

Q METHODS

Presenting author: Elizabeth La, liz.m.la@gsk.com

Supplementary details on methods available through QR-code scanning

Molnar D¹, La E², Verelst F¹, Curran D¹, Poston S², Van Bellinghen L-A³, Graham J⁴

Dashed lines represent extrapolation beyond the median trial follow-up period of the first season in the AReSVi006 phase III clinical trial.

Months following vaccination

• RSV ARI: 5.36%

- To achieve this modeled public health impact in real-world practice, efforts will be needed to support RSV vaccination among older \checkmark adults (e.g., through patient and healthcare provider education on RSV disease and vaccines).

EPH45

Funding: GlaxoSmithKline Biologicals SA (GSK study identifier: VEO-000319); Acknowledgments: Business & Decision Life Sciences c/o GSK (writer: Sarah Fico); Jessica Pickett, Zinan Yi, Will Herring and Ilse Van Vlaenderen

ASSESSING THE PUBLIC HEALTH IMPACT OF THE ADJUVANTED RESPIRATORY SYNCYTIAL VIRUS PREFUSION F **PROTEIN VACCINE (RSVPreF3 OA) AMONG OLDER ADULTS IN THE UNITED STATES (US)**

¹GSK, Wavre, Belgium; ²GSK, Philadelphia, PA, USA; ³CHESS in Health, Bonheiden, Belgium; ⁴RTI Health Solutions, Research Triangle Park, NC, USA

+ SUPPLEMENTARY MATERIAL

Key inputs and assumptions

- Total eligible population (≥ 60 years): 81,001,651.⁴
- Vaccine efficacy inputs were based on the results from the first season of the AReSVi006 phase III clinical trial.³
- In alignment with the clinical trial design, the model assumes 50% of peak efficacy during the month of vaccination (with vaccine efficacy waning applied starting in month 2).
- Accounts for seasonality of RSV incidence using inputs below (based on data pre-COVID).

Seasonality factor for RSV ARI infections⁶

		≥75 years	
January	275.4%	% of RSV LRT	
February	233.5%	Probability of	
March	174.4%	60-64 years 65-74 years	
April	49.2%	≥75 years	
Мау	16.2%	Healthcare	
June	8.5%		
July	6.0%	HCRU per cas Hospitalizatio	
August	3.0%	60-64 years	
September	10.3%	65-74 years	
October	34.0%	≥75 years	
Novombor	102 7%	ED visit	
NUVEIIIDEI	102.7 /0	OP visit	
December	286.7%	Antibiotic pre	

Sensitivity analyses

Adjuvanted RSVPreF3 OA vaccine resulted in reduced RSV burden across a range of one-

		RSV inc	idence	% of RSV case	s that are LRTD	RSV mo	ortality
Annual number of cases avoided	by vaccination	Lower bound	Upper bound	Lower bound	Upper bound	Lower bound	Upper bound
	Base-case	0.0211	0.0568	32.2%	52.0%	See values ir	n table above
Symptomatic RSV ARI cases	1,277,725	706,032	1,863,672	1,277,725	1,277,725	1,277,725	1,277,725
RSV URTD cases	603,890	334,215	879,368	761,948	445,832	603,890	603,890
RSV LRTD cases	673,835	371,818	984,304	515,776	831,893	673,835	673,835
Medically-attended RSV cases	496,076	273,982	723,943	455,510	536,641	496,076	496,076
Hospitalizations	94,984	52,411	138,749	72,704	117,264	94,984	94,984
ED visits	23,278	12,845	34,003	17,818	28,738	23,278	23,278
Pneumonia cases	87,293	48,168	127,513	66,817	107,769	87,293	87,293
Antibiotics prescription	414,668	228,995	605,213	373,013	456,323	414,668	414,668
RSV-related deaths	7,743	4,273	11,311	5,927	9,560	4,856	10,631

Presenting author: Elizabeth La, liz.m.la@gsk.com

Molnar D¹, La E², Verelst F¹, Curran D¹, Poston S², Van Bellinghen L-A³, Graham J⁴

Epidemiology input	Base-case value	(range)	Source(s)
Annual incidence of symptomatic RSV ARI per person year at risk	0.0385 (0.0211-0).0568)	2, 7, 8
% of RSV ARI cases that are RSV LRTD	42.1% (32.2-52	2.0%)	3
% of RSV ARI cases that are medically attended			
RSV URTD	25.3%		2, 7-9
RSV LRTD	51.0%		
% of medically-attended RSV LRTD cases that are			
hospitalized			
60-64 years	10.7%		7
65-74 years	28.0%		
≥75 years	37.5%		
% of RSV LRTD cases resulting in pneumonia	13.0%		2, 7-9
Probability of death given RSV LRTD			
60-64 years	0.0039 (0.0021-0.0056)		2, 7-10
65-74 years	0.0102 (0.0055-0.0148)		2,710
≥75 years	0.0180 (0.0127-0).0233)	
Healthcare resource use per RSV LRTD and URTD	case ⁷		
ICRU per case	URTD	URTD L	
lospitalization			
60-64 years	NΛ	5.43% 14.29%	
65-74 years			
≥75 years		19.12%	
ED visit	NA	3.45%	
DP visit	25.29%	50.95%	
Antibiotic prescription	18.56%	44.91%	

ABBREVIATIONS

AReSVi006	AReSVi006 (Adult Respiratory Syncytia
ARI	acute respiratory illness
ED	emergency department
LRTD	lower respiratory tract disease
NA	not applicable
OA	older adults
OP	outpatient
RSV	respiratory syncytial virus
RSVPreF3	Respiratory Syncytial Virus Prefusion R
URTD	upper respiratory tract disease
US	United States

REFERENCES

- Coultas J.A. et al., Thorax, 2019. 74(10): p. 986-993.
- Falsey A.R. et al., N Engl J Med, 2005. 352(17): p. 1749-59.
- Papi A. M.D. et al., N Engl J Med 2023. 388(7): p595-608.
- US Census Bureau. 2018. Accessed: 10/03/2022. Available from: https://www.census.gov/data/datasets/2017/demo/popproj/2017-popproj.html.
- Centers for Disease Control and Prevention (CDC). 2022. Accessed: 12/10/2022. Available from: https://www.cdc.gov/flu/fluvaxview/coverage-2022estimates.htm.
- Data on file. National Respiratory and Enteric Virus Surveillance System (NREVSS) 2018/2019 data.
- Belongia E.A. et al., Open Forum Infect Dis, 2018. 5(12): p. ofy316.
- DiazGranados C.A. et al., N Engl J Med, 2014. 371(7): p. 635-45.
- Herring W.L. et al., Vaccine, 2022. 40(3): p. 483-493.
- Tseng H.F. et al., J Infect Dis, 2020. 222(8): p. 1298-1310.

DISCLOSURES

Authors: Daniel Molnar (0000-0002-6785-3812), Elizabeth La (0000-0001-5652-8961), Frederik Verelst (0000-0001-8399-743X), Desmond Curran (0000-0002-7423-0111), Sara Poston (0000-0003-4735-057X), Laure-Anne Van Bellinghen and Jonathan Graham (0000-0002-3227-5928).

Acknowledgements

Business & Decision Life Sciences platform provided editorial assistance and publications coordination, on behalf of GSK. Sarah Fico provided medical writing support. The authors would like to thank Jessica Pickett, Zinan Yi, Will Herring and Ilse Van Vlaenderen for their contributions to this study.

Funding

GlaxoSmithKline Biologicals SA funded this study (GSK study identifier: VEO-000319) and all costs associated with abstract and poster development.

Disclosures

DM, EL, FV, DC and SP are employed by GSK and hold shares in GSK. Jonathan Graham is employed by RTI Health Solutions, a not-for-profit organization, which received funding from GSK for the conduct of this study. Laure-Anne Van Bellinghen is employed by CHESS in Health which received funding from GSK for research consulting services. The authors declare no other financial and non-financial relationships and activities.

I Virus) phase III clinical trial

Protein Vaccine