THE CHOICE INSTITUTE

This is the first CEA assessing CBT

incorporating fall-associated costs,

suggesting its notable impact on the results of economic evaluations

CBT is moderately cost-effective vs. oral ADs in

older adults with depression per a willingness-to-

pay (WTP) threshold of \$150,000/QALY

Increased fall risk from oral ADs deserves

consideration in clinical decision making and

future economic evaluations with older adults

A randomized controlled trial (RCT) of CBT vs. oral ADs in older adults with depression is

needed to capture true efficacy differences

vs. oral ADs in older adults

School of Pharmacy

KEY TAKEAWAY

CONCLUSIONS

Cognitive Behavioral Therapy (CBT) vs. Oral Antidepressants for **Treatment of Depression in Older Adults:** A Cost-Effectiveness Analysis

Kevin H. Li, PharmD Candidate; David L. Veenstra, PharmD, PhD

University of Washington, School of Pharmacy, Seattle, WA, USA

BACKGROUND

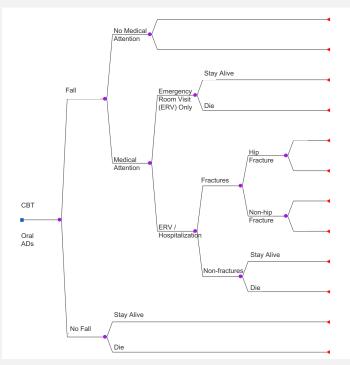
- · While economic evaluations have been conducted on treatments for major depressive disorder (MDD) in a general population, the cost-effectiveness of treatments for MDD specifically in older adults has not been assessed¹
- · Specific considerations must be made given that:
- Older adults treated with oral antidepressants (ADs) experience a higher risk of falls compared to non-users²
- Falls are the leading cause of injury-related death among older Americans³

OBJECTIVE

· Estimate the cost-effectiveness of CBT compared with oral ADs for MDD in older adults from a US Medicare perspective, particularly considering the risk of falls, fallrelated emergency visits and related consequences

METHODS

- A decision tree was constructed (Figure 1; Table 1)
- · Probability, cost, and utility inputs were derived from publicly available literature and resources (Table 2)
- The main outcome measure was incremental cost per quality-adjusted life year (QALY) gained
- · Uncertainty was assessed through a one-way deterministic sensitivity analysis and scenario analysis
- Scenario 1: No difference in fall risk for CBT vs. oral ADs
- Scenario 2: Use of group CBT only
- Scenario 3: Use of a serotonin-norepinephrine reuptake inhibitor (SNRI) instead of selective serotonin reuptake inhibitor (SSRI) as oral AD proxy


TABLE 1: Summary of Key Model Characteristics

Population	Community dwelling older adults (65+) newly diagnosed with MDD	
Comparators	CBT vs. oral ADs	
Perspective	Medicare payer	
Time Horizon	1 year	

METHODS

FIGURE 1: Decision Tree Model

TABLE 2: Summary of Key Model Inputs

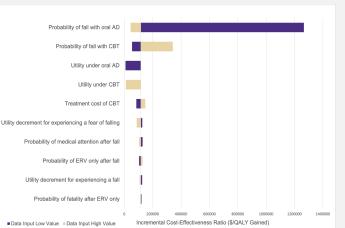

Probabilities			
Probability of fall under treatment with CBT ⁴	0.21		
Probability of a fall under treatment with oral ADs ⁴	0.27		
Mean Annual Costs (2022 US\$)			
Oral ADs (SSRIs / SNRIs)5,6	45 / 381		
CBT (Group / Individual) ⁷	328 / 1,811		
Hip Fracture ⁸	28,819		
Utilities			
Under oral ADs & CBT ^{9,10}	0.67		
Utility decrement for experiencing a fall ¹¹	0.03		
Utility decrement for experiencing a fear of falling ¹¹	0.06		
Utility decrement for experiencing a hip fracture ¹²	0.14		

TABLE 3: Base Case Results

	СВТ	Oral ADs	Incremental Value
Cost (\$)	1,898	1,113	785
Utility (QALY)	0.62	0.61	0.01
ICER (\$/QALY)	115,862		

_		СВТ	Oral ADs	Incremental Value
ario	Cost (\$)	1,898	1,113	785
Scenario	Utility (QALY)	0.62	0.62	-
0,	ICER (\$/QALY)	CBT is dominated		
0 2	Cost (\$)	1,157	1,113	44
Scenario 2	Utility (QALY)	0.62	0.61	0.01
Sce	ICER (\$/QALY)	6,462		
0 3	Cost (\$)	1,898	1,475	423
Scenario 3	Utility (QALY)	0.62	0.61	0.01
SC	ICER (\$/QALY)	56,327		

FIGURE 2: One-way Deterministic Sensitivity Analysis

REFERENCES:

1. Ross EL, et. al. Ann Intern Med. 2019;171(11):785-795; 2. Haddad YK, et al. J Safety Res. 2021;76:332-340; 3. Bergen G, et. al. MMWR Morb Mortal Wily Rep. 2016;65:993-998; 4. Haddad YK, et al. J Safety Res. 2021;76:332-340; 5. MicroMedex. 2022; 6. Milligram Health. 2022; 7. CMS. 2013; 8. Tannenbaum et. al. Drugs Aging. 2015;32(4):305-314; 9. Sobocki P et. al. Value Health. 2007;10(2):153-160; 10. Gould RL et. al. J Am Geriatr Soc. 2012;60(10):1817-1830; 11. Iglesias CP et. al. Osteoporos Int. 2009;20:869-878; 12. Hiligsmann M et. al. Calcif Tissue Int. 2008;82(4):288-292.

RESULTS

	СВТ	Oral ADs	Incremental Value
Cost (\$)	1,898	1,113	785
Utility (QALY)	0.62	0.61	0.01
ICER (\$/QALY)		115,862	

TABLE 4: Scenario Analysis Results

		СВТ	Oral ADs	Incremental Value	
	Cost (\$)	1,898	1,113	785	
	Utility (QALY)	0.62	0.62	-	
	ICER (\$/QALY)	CBT is dominated			
;	Cost (\$)	1,157	1,113	44	
	Utility (QALY)	0.62	0.61	0.01	
	ICER (\$/QALY)	6,462			
	Cost (\$)	1,898	1,475	423	
Occilaio	Utility (QALY)	0.62	0.61	0.01	
	ICER (\$/QALY)	56,327			

STRENGTHS

- Robust fall risk data from matched cohort study with 8,742 Medicare community-dwelling older adults
- · Transparent reporting

LIMITATIONS

- External validity may be impacted by the real-world inaccessibility of CBT and less than 100% adherence for oral ADs
- Internal validity may be impacted by the unavailability and variability of data inputs
- · The model did not include the treatment option of combined CBT + pharmacotherapy, the risk and costs associated with recurrent falls, and other perspectives besides payer (e.g., societal)

ACKNOWLEDGMENTS

This study is supported by the Plein Endowment for Geriatric Pharmacy Research

DISCLOSURES

The authors have nothing to disclose