Feasibility Study for Patient Journey Mapping for Ovarian Cancer Using Electronic Health Record Data

Background and Objectives

- Understanding a patient journey is essential for patients' decision-making and improvement in the care process for better patient outcomes.
- Electronic Health Record (EHR) is a promising data source reflecting diverse treatment pathways in oncology
- However, in Japan, EHR is still underutilized for secondary use due to the complexity of quantitative analysis (e.g., unstructured and unstandardized data)
- This study aimed to clarify how the patient journey of ovarian cancer (OC) can be visualized by extracting and analyzing EHR information.

Methods

Data Source

 Patients with a definite diagnosis of OC between May 2013 and October 2020 at NCCHE in Japan were identified using EHR.

National Cancer Center Hospital East (NCCHE) Beds: 425. Outpatient visits (2021): first, 10,001; return, 309,484. Clinical trials (CT): 720 and 190 patients were enrolled in 411 company sponsored CT and 59 investigator-initiated CT, respectively

Informed consent was obtained in the form of opt-out on the website of NCCHE according to Ethical Guidelines for Medical and Health Research Involving Human Subjects.

Stand alone setting at NCCHE

Population

On-premise Server

- 574 female patients with a definitive diagnosis of OC (defined based on ICD-10) were specified and classified into three groups (see details in Figure 1):
- visit with treatment (n=185),
- only visit for medical examination, including second opinion without treatment (n=359), or
- participation in clinical trials (n=30).
- Of 96 patients with a visit for treatment, including surgery and/or chemotherapy, 85 patients who started any treatment for OC as first line before the end of May 2020 were further analyzed. Analysis
- Hospital visits and duration(days) for pre, during, and post-treatment and the number of lines of therapy were summarized as a patient journey with their mean (SD) and median (Q1 - Q3).
- Patient characteristics and toxicity were summarized as the frequency with percentage.
- Longitudinal treatment pathway and first line treatment were visualized using Sankey diagram.

Results

- The entire patient journey captured that 60% of the patients who visited NCCHE only for second opinion or examination and 40% of the patients who received treatment with a variety of visits/duration for treatment (Figure 1).
- Two-thirds of the patients who received first line treatment was sixty years or older (Table 1).
- As a longitudinal treatment sequence, patients received paclitaxel and carboplatin combination (TC) therapy such as TC and dose-dense (dd) weekly TC regimen for first line treatment Gemcitabine, Doxorubicin, and Topotecan were additional options for recurrent OC (Figure 2).
- During the first line treatment, the Sankey diagram revealed the changes in initial regimen or early discontinuation in 47% and 25% of the patients by the end of six cycles of TC and dd weekly TC regimen, respectively (Figure 3). Also, 22% and 60% of patients experienced dose reduction in both regimens (Data not shown)
- The three most frequent any grade adverse events during first line treatment were peripheral sensory neuropathy (12.9%); malaise (11.8%); nausea and anorexia (10.6%) as non-hematologic toxicity, and hemoglobin decreased (95.3%); neutrophil decreased (89.4%); ALT increased (77.6%) as hematologic toxicity based on blood testing (Table 2).

Figure 1. Entire patient journey for patients with a definitive diagnosis of OC at NCCHE

Table 1. Patient characteristics (first line treatment, n=85)

		n	%
Age at the initia	tion of first line treatment		
	<30	1	1%
3	30 - 39	3	4%
4	10 - 49	9	11%
!	50 - 59	16	19%
(50 - 69	24	28%
-	70 - 79	21	25%
;	>=80	11	13%
Primary tumors	site		
(Dvarian	73	86%
1	Peritoneal	12	14%
listological typ	e		
	High-grade serous carcinoma	16	19%
1	Low-grade serous carcinoma	2	2%
9	Serous (no grade specified) carcinoma	10	12%
(Clear cell carcinoma	7	8%
1	Mucinous carcinoma	3	4%
1	Endometrioid carcinoma	4	5%
1	Not specified	43	51%
Stage			
		10	12%
1	I	0	0%
1	II	9	11%
1	V	2	2%
1	Not specified	64	75%
erformance st	atus		
()	26	31%
-	L	9	11%
2	2	5	6%
3	3	1	1%
1	Not specified	44	52%
iming of Surge	ry		
1	Primary debulking	29	34%
I	nterval debulking	15	18%
1	No operation at NCCHE	41	48%
/ledical history			
1	Neoplasm	23	27%
I	Endocrine, nutritional and metabolic diseases	31	36%
I	Diseases of the circulatory system	29	34%
I	Diseases of the digestive system	25	29%
1	Mental and behavioral disorders	4	5%

Hideaki Kagitani¹, Kenichi Harano², Toru Mukohara², Takehiro Nakao³, Michihiko Aki⁴, Ai Kato¹, Masamitsu Hihara¹, Mai Itagaki², Katsuya Tsuchihara³ ¹Takeda Pharmaceutical Company Limited, Tokyo, Japan, ²National Cancer Center Hospital East, Chiba, Japan, ³National Cancer Center Japan, Chiba, Japan, ⁴Fujitsu Limited, Kanagawa, Japan

Figure 2. Longitudinal treatment sequence of chemotherapy among the patients who received first line treatment (n=85)

Definition of regimens for chemotherapy

Regimen	Paclitaxel	Carboplatin (CBDCA)	Bevacizumab (BV)	Gemcitabine (GEM)
тс	day1, q3w	day1, q3w	-	-
Weekly TC	day1, qw	day1, qw	-	-
Dose-dense(dd) weekly TC	day1,day8,day15;q3w	day1, q3w	-	-
TC + BV	day1, q3w	day1, q3w	day1, q3w	-
GEM + CBDCA	-	day1, q3w	-	day1,day8;q3w
Doxil + CBDCA	-	day1, q4w	-	-

RWD94

Figure 3. Cycles of chemotherapy and timing of surgery during first line treatment (n=85)

Doxorubicin

(Doxil)

_

_

-

-

day1, q4w

Table2. Toxicity during first line treatment (n=85)

	n	%
Non-hematologic toxicity (Top 10)		
Peripheral sensory neuropathy	11	12.9%
Malaise	10	11.8%
Nausea	9	10.6%
Anorexia	9	10.6%
Alopecia	8	9.4%
Constipation	5	5.9%
Diarrhea	4	4.7%
Pain	4	4.7%
Stomatitis	3	3.5%
Myalgia	3	3.5%
Hematologic toxicity based on blood testing		
Neutrophil decreased	76	89.4%
Hemoglobin decreased	81	95.3%
Platelet decreased	58	68.2%
ALT increased	66	77.6%
AST increased	53	62.4%
Creatinine increased	22	25.9%

Conclusions

- The less frequent toxicity compared with previous clinical trials^{1,2} might be due to longer monitoring intervals in daily practice.
- The patient journey of OC revealed the wide range of visits and duration for examination and treatment, including surgery and chemotherapy.
- Patient-level analysis visualized the diverse longitudinal treatment sequence and first line treatment. Further detailed analysis of factors associated with the diversity may improve the patients care and treatment outcomes.
- To achieve more comprehensive and generalized view of patient journeys, further research needs to apply the developed approaches to more hospitals and encompass more information from multiple sources besides EHR.
- Hence, there is a growing need for data standardization techniques and secure analytical environments.

COI : Hideaki Kagitani, Masamitsu Hihara, and Ai Kato are employees of Takeda Pharmaceutical Company Limited. Michihiko Aki is an employee of Fujitsu Limited.

Fund : This study was funded by Takeda Pharmaceutical Company Limited and Fujitsu Limited.

- Reference: 1. Katsumata N. Dose-dense therapy is of benefit in primary treatment of ovarian cancer? In favor. Annals of oncology : official journal of the European Society for Medical Oncology. 2011;22 Suppl 8:viii29-viii32.
- 2. Clamp AR, James EC, McNeish IA, et al. Weekly dose-dense chemotherapy in first-line epithelial ovarian, fallopian tube, or primary peritoneal carcinoma treatment (ICON8): primary progression free survival analysis results from a GCIG phase 3 randomized controlled trial. The Lancet. 2019;394(10214):2084-2095.