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• CheckMate 214 has the longest follow-up data across all randomized phase 3

trials investigating 1L treatment of aRCC patients with IO agents. Sustained

plateau behavior in the KM-curves for PFS, high response rates and durability of

response reported from the 5-year follow-up for patients treated with NIVO+IPI

are strong clinical indications of survival heterogeneity.

• The distinct nature of the survival curves estimated for each latent class and the

differences in their weights are indicative of strong statistical ability of PMMs in

eliciting survival heterogeneity that may not be clearly manifested by the

prognostic variables for the trial population.

• Unlike the strong plateau behavior in the KM-curve for PFS, there was no

apparent flattening in the tail of the KM-curve for OS at 60 months of follow-up.

Therefore, the range of fractions of high-performer subgroup was wider in the

estimations from the OS data than those from the PFS data.

• Estimated 5-year restricted mean PFS and OS were consistent across the top-3

fitting PMMs, highlighting the robustness of models satisfying the filtering

criteria.

• The heterogeneity in the PFS outcomes explored by the PMMs were consistent

with those previously reported from the MCMs, a special but more restrictive

group of mixture models where the cured subgroup’s survival was assumed to be

driven only by general population mortality rates and need not be estimated by

the model 9.

• While MCMs are built with the notion of cure, a limitation of the PMMs is the lack

of clinical identification behind latent subgroups. Therefore, it may not be

possible to validate the estimated survival functions of the subgroups from a

clinical perspective or against external data.

• This analysis was limited to I/P-risk patients treated with NIVO+IPI in the

CheckMate 214 trial due to novel mechanism of action for IO agents. For the

sunitinib arm, exploration of PMMs were not considered as there is no

expectation of heterogeneity in survival or durability of response based on

treatment’s mechanism of action or prognostic clinical variables.

• With the exception of the Exponential + Exponential mixture model, all PMMs

considered in this analysis require > 3 parameters whereas the majority of the

standard parametric models require < 3 parameters. Therefore, the flexibility to

tackle heterogeneous survival data by PMMs comes with a trade-off of over-fitting

of the data which may lead to overly-optimistic long-term survival projections.

MSR54Exploring hidden survival heterogeneity among first-line intermediate/poor-risk advanced renal cell 
carcinoma patients treated with nivolumab plus ipilimumab in the CheckMate 214 trial via parametric 
mixture models

Background

Results

Matthias Hunger,1 Saby George,2 Matthew Dyer,3 Flavia Ejzykowicz,4 Jessica R May,3 Murat Kurt4

1 ICON plc, Munich, Germany; 2 Roswell Park Comprehensive Cancer Center, Buffalo, NY, United States; 3 Bristol Myers Squibb, Uxbridge, United Kingdom; 4 Bristol Myers Squibb, Princeton, NJ, United States

• Renal cell carcinoma (RCC) is the most common type of kidney cancer in

adults, accounting for 80-90% of all kidney malignancies. Historically, the

five-year survival rate for those diagnosed with metastatic, or advanced RCC

(aRCC) is 13%.1

• Approximately 77% of aRCC cases are classified as intermediate/poor-risk

(I/P) according to International Metastatic Renal Cell Carcinoma Database

Consortium (IMDC) model.2,3 Nivolumab plus ipilimumab (NIVO+IPI)

combination therapy has been approved by Food and Drug Administration in

the US and the European Medicines Agency for the first-line (1L) treatment of

aRCC patients with I/P-risk based on the results from pivotal, phase 3

randomized CheckMate 214 trial.4

• Analyses from the CheckMate 214 trial with a minimum 60 months of follow-

up showed superior efficacy outcomes for NIVO+IPI compared with sunitinib

in the I/P-risk population.5 Specifically, the OS hazard ratio (HR) was 0.68

(95% confidence interval [CI], 0.58–0.81) and progression-free survival (PFS)

(assessed per independent radiology review) HR was 0.73 (95% CI, 0.61–

0.87).5

• Patterns of durable response and survival for patients treated with immuno-

oncologic (IO) agents pose challenges for traditional survival modelling

approaches. Models that do not account for survival heterogeneity may fall

inadequate in capturing the changes in the complex hazard trend over

time.6-8

• Survival heterogeneity and the underlying fraction of long-term survivors

(LTS) among NIVO+IPI patients were previously explored by the applications

of mixture cure models (MCMs). Analysis of PFS data estimated approximately

30% of the patients to be progression-free LTS.9 On the other hand, analyses

of OS and duration of response data for the responder subgroup showed that

between 60% and 75% of the patients who achieve response are expected to

be LTS.10

• Parametric Mixture Models (PMMs) are flexible survival analysis frameworks

that can be used to explore clinically unobservable survival heterogeneity in

a given population by modeling its survival as a mixture of the survival of two

(or more) distinct and latent subgroups.11 PMMs are increasingly considered

as alternatives to standard parametric models for modeling long-term

survival data for IO agents by allowing for varying degrees of flexibility to

capture potential delays in response and heavy-tailed behavior of Kaplan-

Meier (KM) curves.8,12,13

Analysis of PFS:

• Among all 15 candidate PMMs, eight combinations were deemed viable, by

satisfying all model selection criteria (Table 1). Estimated survival curves

from these models (for the overall study population and the two latent

subgroups) along with the reported KM-curve are shown in Figure 1.
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Table 1. Results of model-selection algorithm for PFS Conclusions
• PMMs may adequately capture the complex survival and hazard trends for 1L

I/P-risk aRCC patients treated with NIVO+IPI by offering insights on potential

survival heterogeneity without making clinically restrictive assumptions.

• From a statistical standpoint, as observed for 4 and 5 candidate combinations in

the analyses of PFS and OS data, respectively, optimization of the inherently

complex likelihood functions of PMMs may be computationally intensive due to

potential convergence issues.

• Capturing the time-varying hazard trend in the OS data with an Exponential +

Exponential mixture model can relax the need for tunnel states in OS

predictions for I/P-risk RCC populations in earlier treatment settings who are

treated with NIVO+IPI upon recurrence.

Email: murat.kurt@bms.com

• To visualize unobservable heterogeneity in survival among 1L I/P-risk aRCC

patients treated with NIVO+IPI in the Checkmate 214 trial using PMMs

• To develop an algorithm that can guide the selection of PMMs for the 

evaluation of long-term PFS and OS by accounting for a variety of statistical 

metrics and clinical plausibility

• For each subgroup’s survival, candidate parametric distributions

recommended by the National Institute for Health and Care Excellence

(NICE) (Exponential, Weibull, Log-Logistic, Log-Normal, and Gamma) were

considered. Gompertz and Generalized Gamma distributions were omitted

from consideration to avoid the risk of over-fitting. In total, 15 PMMs were

fitted to each endpoint using the fmm package in Stata 14.

• General population mortality rates based on United Kingdom (UK) Office of

National Statistics life tables (matched to the trial population by baseline

age and gender) were used to gauge the clinical plausibility of the estimated

survival in the high-performers subgroup.

• The potential for a local versus global solution in the likelihood maximization

was evaluated by testing extreme starting values for the expectation-

maximization algorithm employed by the fmm package in Stata.

• Best-fitting PMMs among 15 different combinations were identified based on

their statistical goodness-of-fit measures and visual inspection using a two-

step algorithm:

⎻ In Step 1, all PMMs dissatisfying at least one of the following conditions

were eliminated: A) Survival of the high-performer subgroup was no more

than 2% higher than general population OS at any point in time, B)

Maximum deviation between the estimated and observed KM curves for

the overall study population was < 5% at all times, C) Estimated survival of

the subgroups do not cross each other at any point in time. Only the PMMs

satisfying criteria A), B), and C) together were considered for additional

filtering in Step 2.

⎻ In Step 2, the applied filtering criteria were more qualitative and included

comparisons based on Akaike/Bayesian Information Criterion (AIC/BIC),

estimated sizes of subgroups (mixtures with drastically imbalanced

subgroup weights were penalized), shapes of long-term extrapolations for

subgroups, discrepancies between estimated and observed hazards for the

overall study population, and consistency of results with the extreme

value testing.
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High-performer survival 

vs. general population 

OS
✓ X X ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Estimated vs. observed 

KM-curves for the 

overall study population
X X X ✓ X X ✓ ✓ X ✓ ✓ ✓ ✓ ✓ X

Crossing of survival 

functions of high- and 

low-performers ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

AIC/BIC + +++ ++

Estimated subgroup 

sizes

Shapes of long-term 

extrapolations for both 

subgroups

Estimated vs. observed 

hazards for the overall 

study population

Consistency of results 

with extreme-value 

testing
- - - -

Table 2. Results of model-selection algorithm for OS Discussion

Methods

Figure 1. Best-fitting PFS curves for the overall study population and for 

each latent subgroup from the PMMs

Figure 2. Best-fitting OS curves for the overall study population and for 

each latent subgroup from the PMMs

Analysis of  OS:

• Among all 15 candidate PMMs, six combinations were deemed viable, by

satisfying all model selection criteria (Table 2). Estimated survival curves

from these models (for the overall study population and the two latent

subgroups) are shown in Figure 2.

• Majority of the viable combinations included an Exponential model (4 out of

6). Consistent with this prevalence, best overall fit to the OS data was

provided by a mixture of two Exponential distributions (weights: 59% for

high-performer subgroup, 41% for low-performer subgroup).

• Second and third best fits were obtained by an Exponential + Weibull

(weights: 77% for high-performer subgroup, 23% for low-performer subgroup)

and an Exponential + Log-Logistic mixture (weights: 93% for high-performer

subgroup, 7% for low-performer subgroup), respectively.

• Across all viable PMMs, the estimated weight of the high-performer subgroup

ranged between 18% and 93%. Compared to PFS, PMMs were less stable in

exploring heterogeneous OS behavior between the subgroups.

The red (green) line depicts the elicited PFS function in the high (low)-performers subgroup.

The blue line depicts estimated PFS in the overall population (weighted average of PFS in the

two subgroups). Observed PFS is shown by the KM curve in black. Percentages shown along the

estimated survival functions of subgroups refer to their corresponding weights.

The red (green) line depicts the elicited OS function in the high (low)-performers subgroup.

The blue line depicts estimated OS in the overall population (weighted average of OS from the

two subgroups). Observed OS is shown by the KM curve in black. Percentages shown along the

estimated survival functions of subgroups refer to their corresponding weights.

• The study population was assumed to consist of two non-overlapping and

exhaustive latent subgroups with distinct survival patterns. Between the two

subgroups, the one with more favorable estimated survival is referred to as

“high-performers”, and the other is referred to as the “low-performers”.

• In its simplest form, the survival function of the population using PMMs [S(t)]

can be structurally expressed as the weighted average of the survival of high-

and low-performers (subgroups 1 and 2 below, respectively, without loss of

generality):

𝑆 𝑡 = 𝑝 ∗ 𝑆1 𝑡 + 1 − 𝑝 ∗ 𝑆2 𝑡 , where

p and (1-p) represent the estimated proportions of patients categorized as

high- and low-performers, respectively. Estimated survival functions of high-

and low-performers are denoted by S1(t) and S2(t), respectively, where

𝑆1 𝑡 ≥ 𝑆2 𝑡 for all t.

• PMMs were fitted separately to PFS and OS data from the trial with minimum

60-months of follow-up to simultaneously elicit the proportion and survival

function of each subgroup.

• Majority of the viable combinations included a Log-Normal model (5 out of

8); best overall fit to the PFS data was provided by a mixture of two Log-

Normal distributions (weights: 45% for high-performer subgroup, 55% for low-

performer subgroup). Second- and third-best fits were obtained by a Log-

normal + Gamma mixture (weights: 39% for high-performer subgroup, 61% for

low-performer subgroup) and a Log-Logistic + Log-Logistic mixture (weights:

48% for high-performer subgroup, 52% for low-performer subgroup),

respectively.

• Across all viable PMMs, the estimated weight of the high-performer subgroup

ranged between 39% and 48% showing stability of PMMs in capturing the

heterogenous PFS behavior between the subgroups.
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High-performer 

survival vs. general 

population OS
✓ ✓ ✓ ✓ X X ✓ ✓ ✓ ✓ ✓

Estimated vs. 

observed KM-curves 

for the overall study 

population

✓ ✓ ✓ ✓ ✓ ✓ X ✓ X ✓ X

Crossing of survival 

functions of high-

and low-performers
✓ ✓ ✓ ✓ ✓ X ✓ ✓ ✓ ✓ ✓

AIC/BIC +

Estimated subgroup 

sizes - - - - -

Shapes of long-term 

extrapolations for 

both subgroups

Estimated vs. 

observed hazards 

for the overall 

study population

Consistency of 

results with 

extreme-value 

testing

- - - - -

In part 1 (upper part of the table), distributions fulfilling/not fulfilling a criterion are shown

by a green check mark/a red cross. In part 2 (lower part of the table), remaining distributions

are shown in light green, and +/- symbols are used to indicate the quality of the fits relative

to each other with more +/- symbols showing better/worse fits.

In part 1 (upper part of the table), distributions fulfilling/not fulfilling a criterion are shown by

a green check mark/a red cross. In part 2 (lower part of the table), remaining distributions are

shown in light green, and +/- symbols are used to indicate the quality of the fits relative to

each other with more +/- symbols showing better/worse fits.

The 4 PMMs with an entire white-colored columns were eliminated from the beginning due to 

violation of the strict condition on the estimated sizes (to be at least 5%) of subgroups.

• Across the corresponding top 3 PMMs, long-term (30-year) background

mortality-adjusted mean PFS and OS ranged between 6 and 6.68 years, and

between 7.49 and 8.12 years, respectively.

• Estimated 5-year restricted mean OS across the selected top 3 PMMs showed

negligible differences (< 0.8 month), ranging from 38.7 to 39.5 months.

• Estimated 5-year restricted mean PFS across the selected top 3 PMMs showed

negligible differences (<0.6 month), ranging from 25.8 to 26.4 months.
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