Metformin is Associated with Reduced Risk for Sepsis: Analysis of a U.S. Cohort from 2009-2019

SM. Bandy^{1,2}, CA. Black^{1,2}, K. Leung, J. Lipscomb^{1,2}, J. Koeller^{1,2}, R. Benavides^{1,2}, GC. Lee^{1,2}

¹ The University of Texas at Austin, College of Pharmacy, Austin, Tx
² The University of Texas Health at San Antonio, School of Medicine, San Antonio, Tx

OR 1.054, 95% CI 0.672-1.655

Long School of Medicine Presenter: Sarah Bandy Abstract #: 125228

Background

- Metformin is a first-line agent for type 2 diabetes (T2DM)
- Metformin has also been shown to have immunomodulating properties in vaccine responses, chronic inflammation, and various infectious diseases^{1,2}
- Global rates of sepsis has not significantly declined
- Few studies address metformin's role in risk for sepsis³

Objective

 To determine whether metformin-use is associated with lower risk for all-cause sepsis in those with and without T2DM

Methods

Study Design: retrospective, propensity matched U.S. cohort analysis of a third-party medical and pharmacy claims database from 2009 – 2019

Inclusion Criteria:

- Adults ≥ 18 years
- Receipt of a pneumococcal vaccine (PNV) within the study period (index date)
- Continuously enrolled in benefits ≥ 1 year before and after a PNV

Definitions/Outcome:

- Primary outcome: sepsis was evaluated from day 14 to day 366 post index date
- Sepsis was determined using ICD-9/10-CM codes: A40, A40.1, A40.3 A40.8, A40.9, A41.9, I40.0, R65.2, R65.20, R65.21,038.0, 038.2, 041.2, 422.92, 785.52, 995.92,and 995.91
- Metformin-use: ≥ 90-day supply filled prior to index date

Statistics:

- Comparisons of all-cause sepsis between groups were analyzed using Wilcoxon Rank Sum and Chi-squared tests
- Multivariable logistic and linear regression models were conducted as appropriate
- Propensity score-matched analyses was compared for adults with T2DM and without T2DM, who were metforminusers to non-users
- Statistics were run using SPSS version 28.0 (IBP Corp, Armonk, NY)

Results

OR 0.848, 95% CI 0.727-0.988

Figure 1: Cohort flow diagram. PNV = pneumococcal vaccine; T2DM = type 2 diabetes mellitus

Propensity Score Matched Results

T2DM = type 2 diabetes mellitus; aOR = adjusted odds ratio; CI = confidence interval; CKD = chronic kidney disease; COPD; chronic obstructive pulmonary disease

3.469

1.783

1.088

0.776

Table 2: Propensity score matched cohort baseline characteristics for metformin-users and non-users among those with and without T2DM

	T2DM			No T2DM			
Variables*	Metformin-user (n=37,420)	Control (n=37,368)	P-Value	Metformin-user (n=6,926)	Control (n=6,926)	P-Value	S
Age, median (IQR)	62 (55-69)	63 (55-69)	0.307	63 (56-69)	64 (56-69)	0.067	•
Sex, n (%)			0.801			0.202	•
Male	18,423 (49.2)	18,363 (49.1)	-	3,337 (48.2)	3,412 (49.3)	-	•
Female	18,997 (50.8)	19,005 (50.9)	-	3,589 (51.8)	3,514 (50.7)	-	
CKD, n (%)	58 (0.2)	50 (0.1)	0.445	4 (0.1)	4 (0.1)	1.000	
T2DM without complications, n (%)	29,025 (77.6)	29,008 (77.6)	0.838	-	-	-	L
T2DM with kidney complications, n (%)	230 (0.6)	216 (0.6)	0.516	-	-	-	•
T2DM with ophthalmologic complications, n (%)	246 (0.7)	224 (0.6)	0.316	-	-	-	
T2DM with neurologic complications, n (%)	483 (1.3)	429 (1.1)	0.075	-	-	-	•
Modified Charlson Comorbidity Index, median (IQR)	1 (1-1)	1 (1-1)	0.178	0 (0-0)	0 (0-0)	0.119	
*Coloct variables used in propagative score	_						

Select variables used in propensity score.

IQR = interquartile range; CKD = chronic kidney disease; T2DM = type 2 diabetes mellitus

Conclusions

Among persons with T2DM, chronic metformin-use was associated with a 15% lower risk of sepsis within 1 year of the index date compared to matched non-users. These results add to the sparse data highlighting the immunomodulatory effects of metformin and its potential role in vaccine-care, aging, and preventative medicine.

Discussion

3.023-3.981

1.109-2.866

0.975-1.215

0.684-0.882

<0.001

0.017

0.132

Strengths:

eart Disease

PSV23

letformin

- Large study > 600,000
- Propensity matched cohort study
- Novel data evaluating metformin and risk of diagnosis of all-cause sepsis

Limitations:

- Unable to assess medication adherence, vaccination history, disease severity, or mortality
- Unable to assess long term outcomes, longterm metformin use, and other demographics and conditions other than T2DM

References:

- 1. Chen X, Guo H, Qiu L, et al. Frontiers in Immunology. 2020:205(6).
- 2. Frasca D, Diaz A, Romero M, Blomberg BB. Frontiers in Aging. 2021:30.
- 3. Liang H, Ding X, Wang T, et al., Critical Care. 2019:23 (50)