
Comparison of clinical outcomes and healthcare utilization with newer diabetes medications in patients with type 2 diabetes

Karishma Thakkar, PharmD, Anthony Yu, PharmD, Tim Reynolds, PharmD, Karen Rascati, PhD, Paul Godley, PharmD, FASHP Baylor Scott & White Health, University of Texas College of Pharmacy

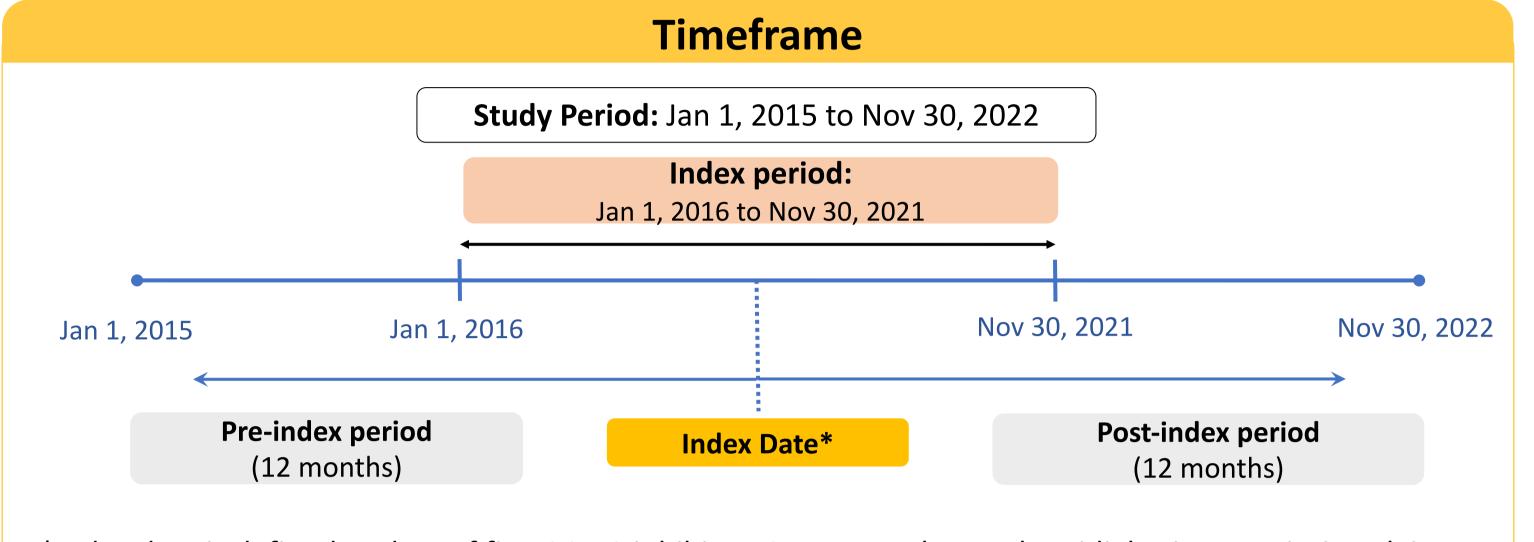
BACKGROUND

- The healthcare cost associated with diabetes in the United States was \$327 billion in 2017 and continues to increase. A large portion of medical costs associated with diabetes cost is treatment of diabetes-related complications.¹
- Newer antidiabetic medications such as, Sodiumglucose cotransporter 2 (SGLT2) inhibitor and Glucagon-like peptide 1 (GLP-1) receptor agonist, have been shown to reduce risk of chronic kidney disease (CKD) progression, cardiovascular (CV) events, and heart failure (HF) hospitalizations.²
- The expanded indications of these novel antidiabetic medications had a dramatic impact on the cost and utilization as a recent study reported a 47.5% increase in PMPM of antidiabetic medications from 2014-2019, with SGLT2 and GLP-1 being the main contributors.³
- This is consistent with a commercial health plan in our accountable care organization (ACO) as shown below.

Diabetes Medication PMPM share by Diabetes Class and Year

OBJECTIVE

 To compare the clinical outcomes and healthcare resource utilization of SGLT2 inhibitors, GLP-1 agonists and other oral antidiabetic medications (oADMs) in patients with type 2 diabetes (T2D).


METHODS

Data Source: Medical and Pharmacy Claims of a commercial health plan linked to electronical health record (EHR) for laboratory data

Inclusion Criteria							
Age	• ≥ 18 years						
Health Plan Enrollment	 Continuous enrollment 12 months pre-index and 12 months post index date 						
Medication history	 ≥ 2 prescription claims for index medication within 6 months of index date 						
Disease history/ Lab values	 T2D HbA1c lab results ≤ 12 months pre-index and ≥ 3 months post-index date 						
Exclusion Criteria							
Medication history	 ≥ 1 prescription claim for both SGLT2 inhibitor and GLP-1 agonist during the study period Any prescription claim within the same class in the previous 6 months 						
Disease history	Type 1 Diabetes (T1D)Gestational diabetes						

Primary Outcome:

- Difference in HbA1c change post initiation of index medication
- Association of medication type on occurrence of all-cause hospitalizations and emergency department (ED) visits after initiation

*Index date is defined as date of first SGLT2 inhibitor, GLP-1, or other oral antidiabetic prescription claim

Statistical analysis:

- Descriptive statistics was used for all continuous (mean and standard deviation) and categorical (percentages) baseline variables
- Comparisons was performed using either Chi-square for categorial variables and ANOVA for continuous variables
- Multivariate logistic regression was used to examine the association of medication type on ED visit and hospitalization controlling for the following covariates: Age, gender, race, number of diabetes medications at baseline, prior insulin use, Diabetes Complications Severity Index (DCSI) score, prior ED visit, prior hospitalization visit

RESULTS

Table 1: Baseline Characteristics **Baseline Characteristics** P-value SGLT2 oADM GLP-1 (N=105) 50.87 (9.64) Age, mean (SD) 0.1418 Female, n (%) 64 (60.95) 53 (62.35) Race/ethnicity, n (%) 42 (40.00) 40 (47.06) Black 27 (31.76) 25 (31.65) 25 (23.81) Hispanic Other 6 (7.06) 7 (8.86) 16 (15.24) Number of antidiabetic 1.67 (0.89) 0.17 (0.45) <.001* 1.82 (0.96) medications, mean (SD) Antidiabetic medications, n (%) Biguanide 57 (72.15) <.001* 63 (74.12) 6 (5.71) <.001* Sulfonylureas 24 (28.24) 26 (32.91) 1 (0.95) DPP4 inhibitors 13 (16.46) 0.0001*7 (8.24) 0 (0.00) 0.0057* TZD 5 (5.88) 8 (10.13) 0 (0.00) Oral combination products 11 (12.94) 17 (21.52) <.001* 1 (0.95) Insulin 32 (37.65) <.001* 9 (8.57) DCSI, mean (SD) 0.99 (1.23) 0.54 (1.14) 0.0385* 8.53 (2.36) 0.9964 HbA1c, mean (SD) 8.56 (1.67) 8.55 (1.90)

Table 2: HbA1c change Outcome GLP-1 oADM P-value SGLT2 8.56 8.53 0.9964 HbA1c pre (%) 8.55 HbA1c post (%) 7.46 0.0178* 8.00 7.33 -0.55 0.0498* Difference -1.21

<u>Table 3: Logistic regression – ED visit</u>

	Reference	Odds Ratio	95% Confidence	P-value	
			Limit		Medication type and
		prior ED visit are			
oADM	SGLT2	0.495	0.180-1.357	0.1718	significant predictors of
GLP-1	SGLT2	0.441	0.195-0.994	0.0483*	ED visit after initiation
		of the index medication			
Yes	No	3.698	1.732-7.899	0.0007*	
			_		

<u>Table 4: Logistic regression – Hospitalizations</u>								
	Reference	Odds Ratio	95% Confidence Limit	P-value				
Medication type								
oADM	SGLT2	0.882	0.160-4.869	0.8851				
GLP-1	SGLT2	0.491	0.114-2.119	0.3406				
DCSI score								
DCSI	-	1.527	1.065-2.189	0.0214*				

DCSI score is a significant predictor of hospitalizations after initiation of the index medication

Post hoc analysis reveled a

significant difference in

HbA1c reduction between

oADM and SGLT-2

CONCLUSIONS

- Patients in the oADM group have less 'other' antidiabetic medications at baseline and have a lower DCSI score, suggesting that this patient group may be newly diagnosed T2D patients.
- oADMs had the greatest change in HbA1c levels (-1.21), however this decrease was not significant when compared to GLP-1 (-1.09).
- The odds of presenting to the ED is 56% lower for patients on GLP-1 compared to those on SGLT2 (95% CI=0.195-0.994).
- Although not significant, patients starting on GLP-1 and oADMs had a lower odds of being hospitalized than SGLT-2.
- Other predictors of ED visit and hospitalizations included previous ED visit and DCSI score
- The odds of presenting to the ED is 3.7 times higher in patients with a prior ED visit compared to patients without a prior ED visit (95% CI=1.732-7.899).
- For each additional increase in DCSI score, the odds of being hospitalized increased by 53% (95% CI=1.065-2.189).
- Overall, patients on GLP-1 had lower ED (significant) and hospitalizations (NS) compared to SLGT2 and oADMs

LIMITATIONS

- Claims study was subject to inaccurate or missing data, and incomplete coding of diagnosis
- Linking claims data to EHR to collect HbA1c values reduced sample size
- A commercial health plan population, may not be generalizable to other payer types or to a population outside this health plan

REFERENCES

1. American Diabetes Association; Economic Costs of Diabetes in the U.S. in 2017. *Diabetes Care* 1 May 2018; 41 (5): 917-928. https://doi.org/10.2337/dci18-0007

2. Einarson TR, Acs A, Ludwig C, Panton UH. Prevalence of cardiovascular disease in type 2 diabetes: a systematic literature review of scientific evidence from across the world in 2007-2017. Cardiovasc Diabetol. 2018;17(1):83. Published 2018 Jun 8. doi:10.1186/s12933-018-0728-6

3. Neilson LM, Munshi KD, PeasahSK, et al. Changes in Type 2 Diabetes Medication Utilization and Costs in the United States, 2014-2019. *Med Care*. 2021;59(9):789-794. doi:10.1097/MLR.00000000001597

DISCLOSURES

Authors of this presentation have no concerning possible financial or personal relationships with commercial entities that may have a direct or indirect interest in the subject matter of this

Questions? Contact <u>Karishma.Thakkar@BSWHealth.org</u>