

Welcome to the ISPOR **Signal** Series Episode

Larger, Deeper and in Real Time: Applications of Machine Learning and Natural Language Processing on Electronic Health Records

#ISPORSignal

Exploring what will shape healthcare decision making over the next decade...

#ISPORSignal

Larger, Deeper and in Real Time: Applications of Machine Learning and Natural Language Processing on Electronic Health Records

#ISPORSignal

Larger, Deeper, and in Real Time:

Applications of Machine Learning and Natural Language Processing on Electronic Health Records to Learn from the Patient Journey at Scale

Discussion Leader: Joe Vandigo, MBA, PhD **Discussants:** Selen Bozkurt, PhD, MS Katherine Tan, PhD Ravi Parikh, MD, MPP

RWD is not always Patient Experience Data

Improved mapping of the patient experience has implications for RWD study designs.

SOURCE: Oehrlein EM, Burcu M, Schoch S, Gressler LE. Enhancing Patient Centricity of Real-World Data Research: An Exploratory Analysis Using the Patient Experience Mapping Toolbox. Value Health. 2023;26(1):10-17. doi:10.1016/j.jval.2022.10.002

Themes for today's panel

Speed

Scale Increasing stratification cohort sizes

Keeping up with standard of care

Depth

Improving representation of underserved populations

Human and AI Collaboration

What is the most exciting opportunity in capturing the patient journey - scale, speed, or depth?

How and when can patients and other stakeholders engage in ML/NLP processes?

Panelists

Joe Vandigo, MBA, PHD

Moderator Applied Patient Experience

Selen Bozkurt, PhD, MS

Discussant Stanford University

Katherine Tan, PhD

Discussant Flatiron Health

Ravi Parikh, MD, MPP

Discussant University of Pennsylvania

Unlocking the Power of Electronic Health Records with NLP/ML

Selen Bozkurt, PhD, MS

Senior Research/Data Scientist

Stanford University School of Medicine (Biomedical Informatics)

VA Palo Alto, Center for Innovation to Implementation

Incoming Assistant Professor, Emory University, Faculty of Medicine (Biomedical Informatics)

Stanford University

Disclosures

Academic consultancy services to F2IL, Flatiron Health, an independent subsidiary of the Roche Group.

Biomedical Informatics

Patient journey through EHR documentation

Longitudinally & Multi Specialty

Learning from (clinical) text

Learning from (clinical) text

Converting unstructured texts into structured data (with NLP & ML)

(1) Bozkurt, et al. Automatic abstraction of imaging observations with their characteristics from mammography reports. Journal of the American Medical Informatics Association 22.e1 (2015)

(2) Bozkurt, et al. Using automatically extracted information from mammography reports for decision-support. Journal of biomedical informatics 62 (2016)

Stanford University

Can we extract *missing* cancer stage data from clinical notes?

Stage information is *missing* from **10 to 50%** of patient records in cancer registries.

NLP pipeline

(3) Bozkurt et al. Expanding the Secondary Use of Prostate Cancer Real World Data: Automated Classifiers for Clinical and Pathological Stage. Frontiers in Digital Health (2022).

Stanford University

NLP pipeline results

(3) Bozkurt et al. Expanding the Secondary Use of Prostate Cancer Real World Data: Automated Classifiers for Clinical and Pathological Stage. Frontiers in Digital Health (2022).

Stanford University

19

Other examples: knowledge discovery from EHRs

(4) Bozkurt et al. Phenotyping severity of patient-centered outcomes using clinical notes: A prostate cancer use case. Learning Health Systems (2020).

(5) Azad, A. D., Yilmaz, M., Bozkurt, S., Diverse patient trajectories during cytotoxic chemotherapy: Capturing longitudinal patient-reported outcomes. Cancer Medicine, 2020.

(6) Bozkurt S, et al. Automated detection of ambiguity in BI-RADS assessment categories in mammography reports. Cross-Border Challenges in Informatics with a Focus on Disease Surveillance and Utilizing Big Data Stanford University

NLP and ML

unlock the power of EHRs at scale

This involves making numerous careful decisions, rather than simply feeding all available data into a model and blindly accepting its output.

AI Governance

to ensure that these technologies are developed and deployed in a safe and responsible way

Reporting of demographic data and representativeness in ML models using EHR

Bozkurt et al. "Reporting of demographic data and representativeness in machine learning models using electronic health records." Journal of the American Medical Informatics Association 27.12 (2020): 1878-1884.

Stanford University

AI best practices in healthcare

As the number of models increases, it is becoming increasingly important to ensure that these models are **fair, unbiased, & generalizable**.

The Fairness and Generalizability Assessment Framework

Stanford University

Hernandez-Boussard, T., Bozkurt, S., Ioannidis, J. P., & Shah, N. H. (2020). MINIMAR (MINimum Information for Medical AI Reporting): developing reporting standards for artificial intelligence in health care. Journal of the American Medical Informatics Association, 27(12), 2011-2015.

<u>AI Governance</u> in healthcare

Lifecycle and Key Dimensions of an AI System

A socio-technical team

Thank you!

selenb@stanford.edu

selenbw.github.io

I'm hiring! Looking for interns, grad students and postdocs

ML-enabled data extraction, faster

Katherine Tan

Flatiron Health

Disclaimers

Katherine Tan is an employee of Flatiron Health, an independent subsidiary of Roche Group.

She holds stock ownership in Roche.

Machine Learning can enhance RWE for HEOR

Cohort selection, identifying samples with greater specificity with respect to inclusion criteria

Identification of of independent predictors and covariates of health outcomes

And much more...

ScienceDirect Contents lists available at sciencedirect.com

Journal homepage: www.elsevier.com/locate/jval

ISPOR Report

Machine Learning Methods in Health Economics and Outcomes Research—The PALISADE Checklist: A Good Practices Report of an ISPOR Task Force

William V. Padula, PhD, Noemi Kreif, PhD, David J. Vanness, PhD, Blythe Adamson, PhD, Juan-David Rueda, MD, PhD, Federico Felizzi, PhD, MBA, Pall Jonsson, PhD, Maarten J. IJzerman, PhD, Atul Butte, MD, PhD, William Crown, PhD

ABSTRACT

Advances in machine learning (ML) and artificial intelligence offer tremendous potential benefits to patients. Predictive analytics using ML are already widely used in healthcare operations and care delivery, but how can ML be used for health economics and outcomes research (HEOR)? To answer this question, ISPOR established an emerging good practices task force for the application of ML in HEOR.

The task force identified 5 methodological areas where ML could enhance HEOR: (1) cohort selection, identifying samples with greater specificity with respect to inclusion criteria; (2) identification of independent predictors and covariates of health outcomes; (3) predictive analytics of health outcomes, including those that are high cost or life threatening; (4) causal inference through methods, such as targeted maximum likelihood estimation or double-debiased estimation-helping to produce reliable evidence more quickly; and (5) application of ML to the development of economic models to reduce structural, parameter, and sampling uncertainty in cost-effectiveness analysis.

Overall, ML facilitates HEOR through the meaningful and efficient analysis of big data. Nevertheless, a lack of transparency on how ML methods deliver solutions to feature selection and predictive analytics, especially in unsupervised circumstances, increases risk to providers and other decision makers in using ML results.

To examine whether ML offers a useful and transparent solution to healthcare analytics, the task force developed the PAL-ISADE Checklist. It is a guide for balancing the many potential applications of ML with the need for transparency in methods development and findings.

Keywords: artificial intelligence, machine learning.

Padula W, et al. Machine Learning Methods in Health Economics and Outcomes Research – The PALISADE Checklist: A Good Practices Report of an ISPOR Task Force. ISPOR Report. https://doi.org/10.1016/j.jval.2022.03.022

Challenge: Critical data elements come from unstructured data

Several data elements critical for outcomes research are stored in unstructured data sources.

Abstracting this information is a **costly** and **resource intensive** task.

Tradeoffs building EHR data solutions using traditional approach of manual chart review

Deep learning models mimic human abstraction

- Scalable, automated extraction of clinical concepts explicitly documented in the patient chart
- It is NOT: prediction or inference of a clinical value based on other patient characteristics; generative modeling (ie, different from chat GPT)

Deep Learning Model Example	Language in Source EHR as Illustrative Snippet (Model Input)	Extracted Variables (Model Outputs)
Biomarkers	"Mr. Smith received NGS test results on 2/20/2021 for EGFR, ALK, and ROS1 and was found to have an ALK rearrangement."	BiomarkerName, BiomarkerStatus, ResultReturnedDate
PD-L1	"Mr. Smith was diagnosed with adenocarcinoma of the lung, PD-L1 <1% on 2/20/2021."	BiomarkerName, PercentStaining, ResultReturnedDate
KRAS	"Mr. Smith tested positive for a KRAS G12C mutation on 1/15/2019 <mark>.</mark> "	MutationG12CDetail

Adamson B, et al. Methods for machine learning extraction of RWD variables from electronic health records. medRxiv 2023.03.02.23286522

Adding KRAS G12C mutation details to a lung cancer dataset using ML

In addition to **biomarker testing status**, knowing <u>mutation details</u> became important for researchers as SOC evolved and targeted therapies are approved

Patient	Biomarker	Result date	G12C mutation?	Sample type	Tissue Collection site	Test type	
A	KRAS	2015-03-19	?	Tissue	Primary	NGS	
В	KRAS	2017-01-23	?	Tissue	Metastatic	NGS	

ML-extracted biomarker mutation detail

EXAMPLE 1:

KRAS G12C

Name: John Smith marker value result egfr (mutation) wild-type no mutation [kras] [gl2c] mutation <u>positive</u> ' table 1: summary of genes, values and results

EXAMPLE 2: Other point mutation Name: Jane Doe marker value result rrmi 0.37 low expression pdl1 high expression (60%) [BRAF] [V600E] positive. ' table 1: summary of genes, values and results

Generalized Biomarker Models

EXAMPLE 1:

KRAS G12C

Name: John Smith marker value result egfr (mutation) wild-type no mutation [kras] [gl2c] mutation <u>positive</u> ' table 1: summary of genes, values and results

Name: John Smith marker value result egfr (mutation) wild-type no mutation [BIOMARKER] [MUTATION] mutation positive ' table 1: summary of genes, values and results EXAMPLE 2: Other point mutation Name: Jane Doe marker value result rrmi 0.37 low expression pdl1 high expression (60%) [BRAF] [V600E] positive. ' table 1: summary of genes, values and results

Name: Jane Doe marker value result rrmi 0.37 low expression pdl1 high expression (60%) [BIOMARKER] [MUTATION] positive. ' table 1: summary of genes, values and results

ML-extraction enabled velocity of obtaining insights at scale and depth

ML-extracted data can generate similar results and conclusions as abstracted data

Results from replication of natural history study of biomarker associated survival

Benedum C, et al. Replication of Real-World Evidence in Oncology Using Electronic Health Record Data Extracted by Machine Learning. *Cancers*. 2023;15(6). doi:10.3390/cancers15061853

Estevez M, et al. Considerations for the use of machine learning extracted real-world data to support evidence generation: A research-centric evaluation framework. *Cancers*. 2022;14(13). doi: 10.3390/cancers14133063

Thank you

Additional Collaborators: Erin Fidyk, Blythe Adamson, Chaya Wurman, Melissa Estevez, Sheila Nemeth, Catherine Au-Yeung (Design)

Katherine Tan Senior Quantitative Scientist Machine Learning & Data Capabilities Flatiron Health @statistikat

in wlktan

Why Human-Algorithm Collaborations will Transform Care Delivery

Ravi B. Parikh, MD, MPP

Ravi.parikh@pennmedicine.upenn.edu

@ravi_b_parikh

Disclosures

- <u>Research Funding</u>: NIH, Department of Defense, Veterans Health Administration, National Palliative Care Research Center, Humana, Prostate Cancer Foundation, NCCN Foundation, Conquer Cancer Foundation, Emerson Collective
- <u>Consultant</u>: Thyme Care, Onc.ai, Biofourmis, Humana, Cancer Study Group, GNS Healthcare, Nanology
- <u>Columnist:</u> Medscape, Flatiron
- Leadership: Coalition to Transform Advanced Care, National Quality Forum

My first experience with AI

6	JENSEN, SERGIO PT VISIT	60min	^	
6	MOSLEY, MALAYA ADULT SICK VISIT	15min		
e	BLACKWELL, CESAR	60min		
Ĩ	CHRISTENSEN, RYKER CHILD SICK VISIT	30min		
	HODGES, ELLIOTT	60min		
	REESE, CALEB	30min		
	KNIGHT, BLAKE	60min	Ì	
	WOODWARD, ROCCO	30min	Ì	
	WALKER, MARA	60min		
	PETERSEN, EVIE	30min		
	CROSS, KEATON	30min	Ì	
	MCKEE, ANABELLA ADULT SICK VISIT	15min		
	STOUT, LIBBY	60min		
	JORDAN, LONDON	20min	İ.	
	HATFIELD, ESTEBAN	60min	İ	
	CHANEY, LINDSAY	30min		
	CAMERON, CORBIN	60min		
	EOLEV ZACUADIAU	Jonnin	Ň	<

@ravi_b_parikh

GIO	Contraction of the			Sign Review		[🕒 Priority 🔹 🕒 H	lold 💌	Readmission Risk	
	60min	2		All 28						
SIT	15min	,		ROACH, TRISTIN	Fibrinogen, INR, PT, PTT AMD_996304_76	a	MILLER, ALEX, MD status: Unreviewed	05•19•17		
, CESAR	60min	,		ROACH, TRISTIN	Lipitor 80 mg	P	MILLER, ALEX, MD status: Unreviewed	05•18•17		
N, RYKER	30min	,		LEON, ERIN	Geriatric Wellness Visit	(JONES, CAMERON, MD status: Unreviewed	05•16•17		
LIOTT	60min	,		• BECK,ALIVIA	Zocor 20 mg	P	JACK, JACK, MD status: Unreviewed, held	05•18•17		
B	30min	,		NORTON, BETHANY	Norvasc 10 mg	Ø	MILLER, ALEX, MD status: Unreviewed	05•18•17		
AKE	60min	1		MONTGOMERY, BLAINE	Glucophage 850 mg	Ø	OSHEA, JAMIE, MD reviewed by: PPMD_AKN status: Reviewed	05•18•17		
D, ROCCO	30min			KLECK, MICHAEL	Office Visit - Abbreviated	Ê	JONES, CAMERON, MD reviewed by: SUSAN status: Reviewed	05•12•17		
ARA	60min			MCARDLE, HELEN	Office Visit - Mobile		JONES, CAMERON, MD status: Unreviewed	05•12•17		
VIE				BERN,MARC	Office Visit - Itemized Conditions	Ê	JONES,CAMERON,MD status: Unreviewed	05•12•17		
SIT TON	30min			ANDERSON, JIM	Advanced Directives Advanced Directives Addendum	Ú	JONES, CAMERON, MD status: Unreviewed	05•12•17		
BELLA	30min	, 		BECKER, JOSEPH	Office Visit1	Ê	JONES, CAMERON, MD status: Unreviewed	05•02•17		
SIT IY	15min	,		HANSEN, GEORGE	Office Visit1	Ê	JONES, CAMERON, MD status: Unreviewed	05•02•17		
NDON	60min	,		FALK, MICHAEL A	Urine Albumin/Creatinine, Urine C & S AMD_996304_74	a	SMITH,TRACY,MD status: Unreviewed	05•02•17		Q Q Q
	20min	,		FERNANDEZ, MEGAN	Urine Albumin/Creatinine, Urine C & S AMD_996304_75	a	OSHEA.JAMIE,MD status: Unreviewed	05•02•17		
STEBAN	60min	,		DEAN, BRIAN	25(OH)D, ANA, B12, C & S, CMV, CRP, ESR or Sedrat AMD_996304_73	a	JONES,CAMERON,MD status: Unreviewed	05•02•17		
NDSAY N	30min	7		CAMPBELL,LISA C	Blood Urea Nitrogen, Calcium, Carbon Dioxide, Ch AMD_996304_72	a	JONES, CAMERON, MD status: Unreviewed	05•02•17		
CORBIN	60min	, ~		BECKER, JOSEPH	#186	P	JONES, CAMERON, MD status: Unreviewed	05•02•17		HAC LAB
			<					>		4
_b_pa	b_parikh 🐺 Penn Medicine 1									

We pretend like all AI is autonomous...

Michole and Rodriguez, Nat Med, 2019

...when instead most current AI is assistive

Renn Medicine 3

Human-algorithm collaborations require more than data science

@ravi_b_parikh

A use case: Serious Illness Communication

- Early communication is key to reducing unwarranted end-of-life care in oncology
- Identifying appropriate patients is key, but oncologists do badly at prognosis

@ravi_b_parikh

Why do existing solutions fail in real-world practice?

Identifying the right patients is hard Changing behavior is hard

Christakis and Lamont, BMJ, 2003; Bestvina and Polite, JOP, 2017 🐺 Penn Medicine 6

Algorithm development and validation

Clinician perspectives on machine learning prognostic algorithms in the routine care of patients with cancer: a qualitative study

Original Investigation | Oncology

Machine Learning Approaches to Predict 6-Month Mortality Among Patients With Cancer

JAMA Oncology | Original Investigation

Validation of a Machine Learning Algorithm to Predict 180-Day Mortality for Outpatients With Cancer

Variables	Examples	Features		
Demographics	Age, Gender			
Comorbidities	33 Elixhauser comorbidities	Total countRecent*		
Cancer-specific	Stage, tumor markers	 Total count First/last value Min/Max 		
Laboratories	CMP, CBC, LDH	Proportion		
Recent utilization	Outpatient visit number	ordered STAT		

HACLAB

Renn Medicine 7

Incorporating behavioral economics with machine learning

Use Case: Predicting mortality to prompt more serious illness communication

Conversation Connect Impact

	Control	Intervention
Chemo last 14 days*	10.4%	7.5%
Hospice before death	59.6%	60.6%
ICU last 30 days	16.9%	15.7%
Spending last 6 months of life*	\$65,971.09	\$78,256.24

HACLAB

Parikh et al, JAMA Onc, 2022

Penn Medicine

Humans don't respond to AI in the same way

Lower-volume oncologists are more likely to respond to a machine learning nudge

Phenotyping clinicians can help refine Al interventions

Penn Medicine

5 O

Human-centered AI can mitigate disparities

	Pre- intervention, %	Post- intervention, %	Absolute Percentage- point Difference
Non-Hispanic White	3.9 (58/1494)	14.2 (201/1417)	10.3
Non-Hispanic Black	3.6 (17/467)	16.9 (69/408)	13.3
Other*	1.2 (2/164)	19.5 (34/408)	18.3

HACLAB

Penn Medicine

Human-in-the-loop models are a promising strategy

Penn Medicine²

Lessons Learned

Machine learning predictions can improve care when

- Clinicians' perspectives are solicited prior to algorithm development
- The algorithm is "vetted" prior to implementation
- They are well-integrated into clinical workflows
- They are paired with behavioral nudges rather than simply displayed on a computer screen

Thank you!

Ravi.parikh@pennmedicine.upenn.edu

@ravi_b_parikh

www.ravibparikh.com

Dana-Farber Cancer Institute Christopher Manz

Abramson Cancer Center Lynn Schuchter Larry Shulman Jennifer Braun Pallavi Kumar

Penn Data Science Michael Draugelis Corey Chivers Thaibinh Luong Susan Harkness Regli

Penn Nudge Unit Mitesh Patel Sujatha Changolkar Charles Rareshide Chalanda Evans Penn Center for Cancer Care Innovation Justin Bekelman Sam Takvorian Katherine Rendle

<u>Mixed-Methods Research Lab</u> Judy Shea Maria Nelson

Leonard Davis Institute/Dept of Medical Ethics and Health Policy Manqing Liu Yichen Zhang Will Ferrell Amol Navathe Ezekiel Emanuel Kevin Volpp

UC Berkeley Ziad Obermeyer

PENN CENTER FOR PRECISION MEDICINE

HACLAB

Penn Medicine 4

RESEARCH CENTER

ITMAT

Institute for Translational Medicine and Therapeutics