**Patient Characteristics, Treatment** Patterns, and Factors of Biomarker **Testing Among Patients with Advanced Non-Small Cell Lung** Cancer (aNSCLC) in the US, 2012-2020



POSTER PDF

n from the author of this

Mo Yang<sup>1</sup>, **Joanna P. MacEwan<sup>2</sup>**, Rebecca Honnold<sup>3</sup>, Monica McClain<sup>2</sup>, Richard M. O'Hara Jr<sup>1</sup>, Frank Liu<sup>1</sup>, Paul Paik<sup>4</sup>

<sup>1</sup>EMD Serono, Rockland, MA, USA, <sup>2</sup>Genesis Research, Hoboken, NJ, USA, <sup>3</sup>Covera Health, New York, NY, USA, <sup>4</sup>Department of Medicine, Thoracic Oncology Service, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Weill Cornell Medical College, New York, NY, USA



## **CONCLUSIONS**



of patients diagnosed with aNSCLC received biomarker testing



Men, Black patients, current smokers, patients with squamous aNSCLC, and patients with an ECOG performance status of 2+ were less likely to be tested



Despite the increase in targeted therapies for aNSCLC and ease of biomarker testing, many real-world patients with aNSCLC were untested



63.6%

of patients received any 1L treatment (chemotherapy, chemotherapy with ICI, ICI alone, TKI, or other)



## **LIMITATIONS**

- Generalizability to the overall aNSCLC and US population is limited as this study only included patients within the TEMPUS CancerLinQ network
- The rate of biomarker testing could be underestimated, especially those with negative results, due to the nature of electronic health record data abstraction
- Rates of biomarker testing were likely affected by the introduction of PD-L1 and other targeted treatments during the observation period of this study (2012–2020)



#### INTRODUCTION

- Lung cancer is the leading cause of cancer deaths in the US<sup>1</sup>
- Approximately 65% to 70% of patients with NSCLC are diagnosed at advanced
- Molecular profiles and immunologic status help determine treatment options and allow for individualized treatment for patients with aNSCLC



## **OBJECTIVES**

To describe patient characteristics, factors associated with biomarker testing, and treatment patterns in real-world US patients with aNSCLC



# **METHODS**

- This retrospective cohort study used the TEMPUS CancerLinQ oncology dataset with an observational period from January 1, 2012, through to December 31, 2020
- Patients diagnosed with Stage IIIB-C/IV NSCLC or an associated metastatic event during the observational period (index date) and ≥18 years of age were
- Patients were excluded if there was missing sex or age information, histology results were inconsistent with NSCLC, or death occurred prior to other events
- Biomarker testing for EGFR, KRAS, ALK, ROS1, BRAF, NTRK, MET, RET, or PD-L1 was analyzed
- Demographics and clinical characteristics, biomarker testing, and treatment patterns were summarized using descriptive statistics
- Patient characteristics associated with biomarker testing were evaluated using univariate logistic regressions. Odds ratios with 95% CIs and p values were reported

#### **RESULTS**

### Patient characteristics

- 6,877 patients met study criteria
- 46.1% were female, median age (IQR) was 65.2 years (58.5–72.7 years), 73.1% were White, and 90.5% were diagnosed at Stage IV (**Table 1**)
- 41.7% (n=2,869) of patients received biomarker testing

**Patients** 

#### **Table 1. Patient characteristics**

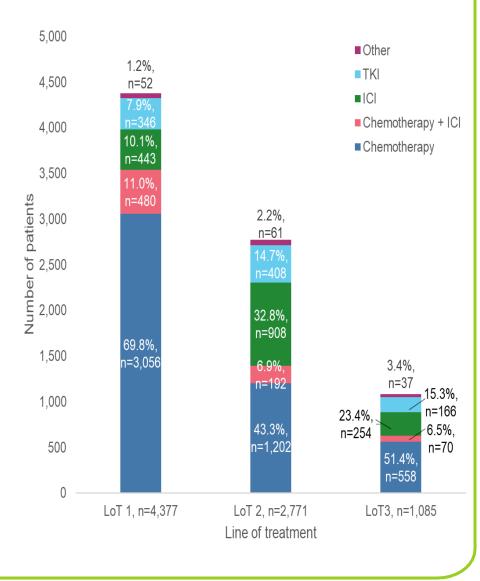
Characteristic

|                               | N=6,877      |  |
|-------------------------------|--------------|--|
| Sex, n (%)                    |              |  |
| Female                        | 3,168 (46.1) |  |
| Age at index                  |              |  |
| Mean (SD)                     | 65.2 (9.8)   |  |
| Race, n (%)                   |              |  |
| White                         | 5,027 (73.1) |  |
| Black or African American     | 917 (13.3)   |  |
| Other*                        | 452 (6.6)    |  |
| Unknown                       | 481 (7.0)    |  |
| Smoking status, n (%)         |              |  |
| Current smoker                | 1,405 (20.4) |  |
| Former smoker                 | 1,717 (25.0) |  |
| Never smoked tobacco          | 459 (6.7)    |  |
| Unknown                       | 3,296 (47.9) |  |
| tage at index, n (%)          |              |  |
| IIIB                          | 623 (9.1)    |  |
| IIIC                          | 31 (0.5)     |  |
| IV                            | 6,223 (90.5) |  |
| COG performance status, n (%) |              |  |
| 0                             | 941 (13.7)   |  |
| 1                             | 1,628 (23.7) |  |
| 2                             | 770 (11.2)   |  |
| 3                             | 245 (3.6)    |  |
| 4                             | 46 (0.7)     |  |
| Missing                       | 3,247 (47.2) |  |
| Brain metastasis⁺, n (%)      | 751 (10.9)   |  |
| listology at index, n (%)     |              |  |
| Non-squamous                  | 4,240 (61.7) |  |
| Other/Unknown                 | 875 (12.7)   |  |
| Squamous                      | 1,762 (25.6) |  |

#### Factors associated with biomarker testing

- Male (vs female; OR: 0.82; 95% CI: 0.74, 0.91), Black patients (vs White; OR: 0.83; 95% CI: 0.72, 0.97), patients with squamous (OR: 0.22; 95% CI: 0.19, 0.25) or unknown histology (OR: 0.53; 95% CI: 0.45, 0.61) (vs non-squamous histology), and patients with an ECOG of 2+ (OR: 0.69; 95% CI: 0.57, 0.84) or missing (OR: 0.56; 95% CI: 0.48, 0.66) (vs ECOG of 0), and patients 51–64 yrs (OR: 0.78; 95% CI: 0.62, 0.97) or  $\geq$ 65 years of age (OR: 0.69 ; 95% CI: 0.55,0.86) (vs age ≤50 yrs) were all less likely to undergo biomarker testing (**Table 2**)
- Never smokers (vs current smokers; OR: 2.64; 95% CI: 2.05, 3.42), and patients diagnosed after 2015 (vs 2012) were more likely to undergo biomarker testing (Table 2)

Table 2. Patient characteristics associated with biomarker testing


| Variable                   | Odds ratio<br>(95% CI) | p value |
|----------------------------|------------------------|---------|
| Intercept                  | 2.04 (1.52, 2.76)      | < 0.001 |
| Sex, male                  | 0.82 (0.74, 0.91)      | < 0.001 |
| Age group at diagnosis     |                        |         |
| 51-64 years                | 0.78 (0.62, 0.97)      | 0.030   |
| ≥65 years                  | 0.69 (0.55,0.86)       | 0.001   |
| Race                       |                        |         |
| Black or African American  | 0.83 (0.72, 0.97)      | 0.72    |
| Other*                     | 1.44 (1.16, 1.79)      | 1.16    |
| Unknown                    | 1.03 (0.84, 1.27)      | 0.84    |
| Smoking status             | 1 10 (1 27 1 71)       | 0.001   |
| Former smoker              | 1.49 (1.27, 1.74)      | < 0.001 |
| Never smoked tobacco       | 2.64 (2.05, 3.42)      | < 0.001 |
| Unknown                    | 1.35 (1.17, 1.55)      | < 0.001 |
| ECOG performance status    |                        |         |
| 1                          | 0.93 (0.78, 1.11)      | 0.414   |
| 2+                         | 0.69 (0.57, 0.84)      | < 0.001 |
| Missing                    | 0.56 (0.48, 0.66)      | < 0.001 |
| Histology                  |                        |         |
| Other/Unknown              | 0.53 (0.45, 0.61)      | < 0.001 |
| Squamous                   | 0.22 (0.19, 0.25)      | < 0.001 |
| Year of advanced diagnosis |                        |         |
| 2013                       | 1.09 (0.89, 1.34)      | 0.398   |
| 2014                       | 1.23 (1.01, 1.51)      | 0.039   |
| 2015                       | 1.21 (1.00, 1.47)      | 0.055   |
| 2016                       | 1.50 (1.23, 1.83)      | < 0.001 |
| 2017                       | 2.77 (2.25, 3.41)      | < 0.001 |
| 2018                       | 2.48 (2.00, 3.07)      | < 0.001 |
| 2019                       | 1.74 (1.34, 2.26)      | < 0.001 |
| 2020                       | 2.07 (1.40, 3.09)      | < 0.001 |

iown race. Reference groups are females, age ≤50, White, current smoker, ECOG score of 0, non-squamou

#### **Treatment patterns**

- 63.6% (n=4,377) of patients received any 1L treatment (Figure 1)
  - 63.3% (n=2,771) received 2L treatment
  - 24.8% (n=1,085) received 3L treatment
- 1L treatment included chemotherapy (69.8%), chemotherapy plus ICI (11.0%), ICI monotherapy (10.1%), tyrosine kinase inhibitors (7.9%), and other treatments (1.2%) (Figure 1)

Figure 1. Treatment patterns by line of treatment and drug class



Acknowledgments: Editorial support was provided by Jacqueline Michel of Genesis Research (Hoboken, NJ, US), and by Syneos Health (London, UK), which was funded by EMD Serono.

Disclosures: MY, Description of Calithera, Takeda, Xencor, CrownBio, Bicara, Mirati, EMD Serono, research institute has received research expenses from Bicara, Calithera and EMD Serono, Serono.