ISPOR 2023 May 7-10 | Boston, MA, USA

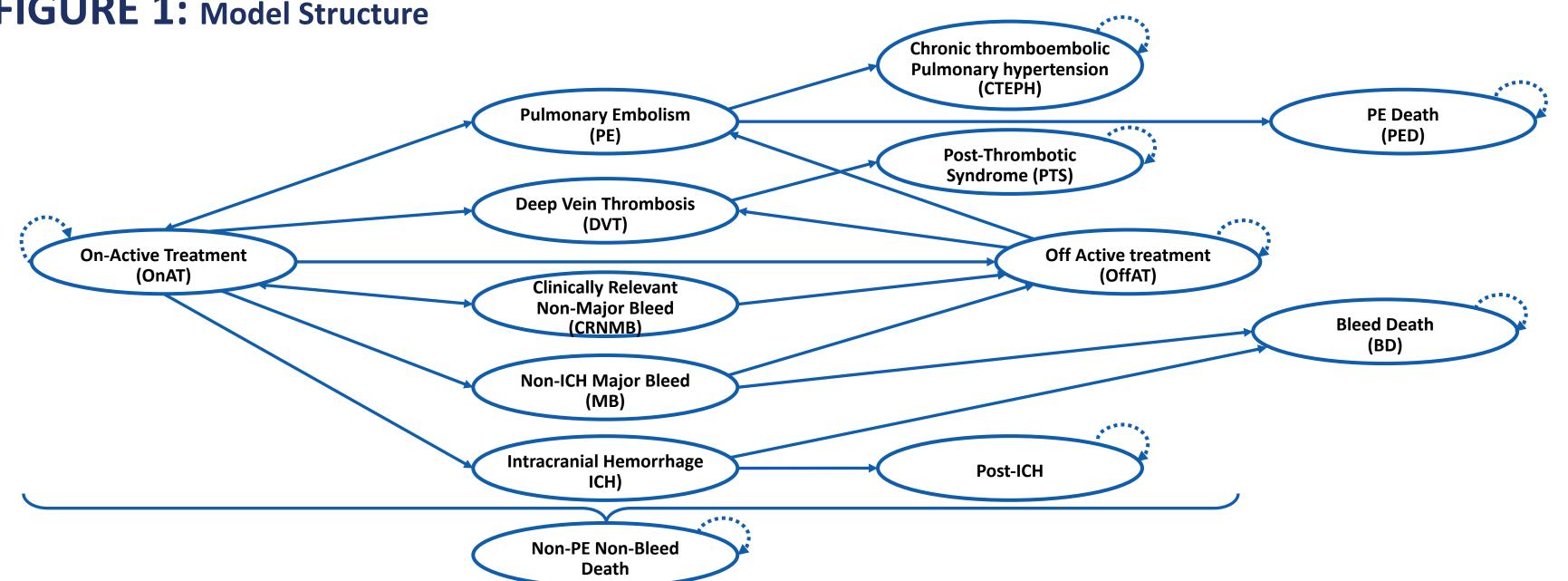
Cost-Effectiveness of a Novel Treatment for Cancer-Associated Thrombosis (CAT): Results from an Early Economic Analysis

OBJECTIVE

This early economic analysis explored the potential cost-effectiveness of a hypothetical new therapy for the treatment of CAT from a United Kingdom (UK) National Health Services (NHS) perspective.

INTRODUCTION

- Cancer is a strong and independent risk factor for thrombosis, particularly venous thromboembolism (VTE).^{1,2} VTE in cancer patients is associated with a higher economic burden and increased health care expenditures compared to cancer patients without VTE.³
- Direct oral anticoagulants (DOACs) and low-molecular weight heparins have demonstrated to be effective in preventing or treating cancer-associated thrombosis (CAT), but they also interfere with hemostasis leading to an increased risk of bleeding and decreased adherence.
- As a result, many patients with CAT who would benefit from treatment do not complete the full 3-6 months of treatment that is recommended by most guidelines. These patients do not receive adequate treatment in terms of dose and/or duration, which can lead to less favorable outcomes.


METHODS

Overview

- A Markov model was developed to reflect the clinical pathways typical of patients with CAT. The model structure was derived from prior cost-effectiveness publications developed by Li et al.^{4,5}
- The model used a one-month cycle length and a lifetime horizon.
- All cost-related input values were inflated to 2021 British pound sterling (GBP); costs and outcomes in the model were discounted annually at 3.5%.
- Key model outcomes included clinical events, life years (LYs) and quality-adjusted LYs (QALYs), total costs, incremental outcomes (eg, clinical events, LYs, QALYs, costs), and incremental cost per QALY gained.

Model Structure & Patient Flow

- A hypothetical cohort of adult patients with active cancer and a diagnosis of acute symptomatic VTE for whom long-term treatment with DOACs is indicated received either the hypothetical treatment, apixaban or dalteparin.
- Patients entered the model in the "On Active Treatment (OnAT)" state and flowed through the model as illustrated in **Figure 1**.

FIGURE 1: Model Structure

Assumptions & Inputs

- Clinical efficacy for the apixaban and dalteparin arms were derived from the data presented in Li et al.^{4,5}
- Treatment discontinuation for apixaban and dalteparin was informed by real-world discontinuation rates. Initial discontinuation rates were informed by an internal analysis of United States (US) claims-based data, while subsequent discontinuation rates were derived from the Li et al. (2019) model.^{4,6}
- Health state costs were derived from UK reference cost tables and health state utilities were derived from the National Institute for Health and Care Excellence (NICE) apixaban appraisal in 2015.^{7,8}
- Key modeling assumptions are summarized in **Table 1**. Key model parameters and input values are summarized in **Table 2**.

Alexandra Ellis¹, Daniel Bloomfield², Nikhil Mehta², Alex Yi², Yasser Khder³

¹Stratevi, LLC, One Lincoln Street, 29th Floor, Boston, MA 02111 ²Anthos Therapeutics, Inc., 55 Cambridge Parkway, Suite 103, Cambridge, MA 02142 ³MYRA Life Sciences, Basel, Switzerland

METHODS **TABLE 1.** Key Assumption Assumption

Patients were assumed to exist in mutu exclusive health states, ie, they could n VTE and bleed simultaneously.

Patients who experienced VTE were as return to the same anticoagulant or sw another treatment depending on assur probabilities.

Patients who experienced MB or ICH w assumed to transition to off-treatment post-ICH, respectively, after 1 cycle.

Patients who experienced CRNMB wer to transition to "off treatment" with a probability after 1 cycle.

TABLE 2: Key Model Parameters

Characteristic	Value	
Age (years) ¹⁰	69 years	
Gender (% female) ¹⁰	51%	
Weight	70 kg	
Cancer type (%) ¹⁰	Males Lung (23%) Colon (21%) Hematological (17%) Bladder (8%) Pancreatic (7%) Stomach (6%) Brain (4%) Prostate (14%)	Females Lung (21%) Colon (19%) Hematological (15%) Bladder (7%) Pancreatic (6%) Stomach (5%) Brain (4%) Breast (12%) Ovarian (9.5%) Uterine (3%)
Health State	Monthly Cost, £	Utility or Disutility
On Treatment, Off Treatment ¹¹⁻¹⁴		Age, gender and cancer-specific
Off Treatment	0	
PE ^{7,15}	1,302	-0.32
DTV ^{7,15}	343	-0.11
CRNMB ^{7,13}	212	-0.0054
MB ^{7,15}	1,260	-0.30
ICH ^{7,15}	3,128	-0.495
CEPTH ^{7,16}	2,871 (first cycle) 1,619 (long-term)	-0.175
PTS ^{7,17}	72	-0.07
Post-ICH ^{7,18}	6,518 (first cycle) 267 (long-term)	-0.215

Apixaban^{19*}

Dalteparin^{19**}

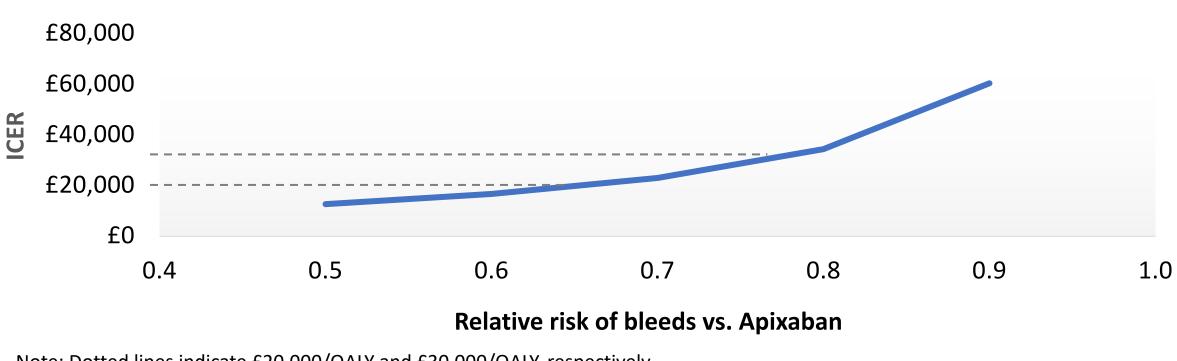
Treatment Administration Dalteparin^{19**}

Hypothetical Treatment***

*Apixaban treatment was 10 mg (2 x 5 mg tablets) twice a day for 7 days then 5 mg twice a day onwards. **Dalteparin treatment consists of 200 IU/kg once a day for the first cycle followed by 150 IU/kg once a day for the remaining cycles. It was assumed that all patients would require training for the first injection and 8% of patients would require professional administration the remaining days. ***The hypothetical treatment was assumed to be administered intravenously for the first dose, followed by monthly subcutaneous injections. The administration cost was assumed equal to one professional injection of dalteparin.

0	n	S

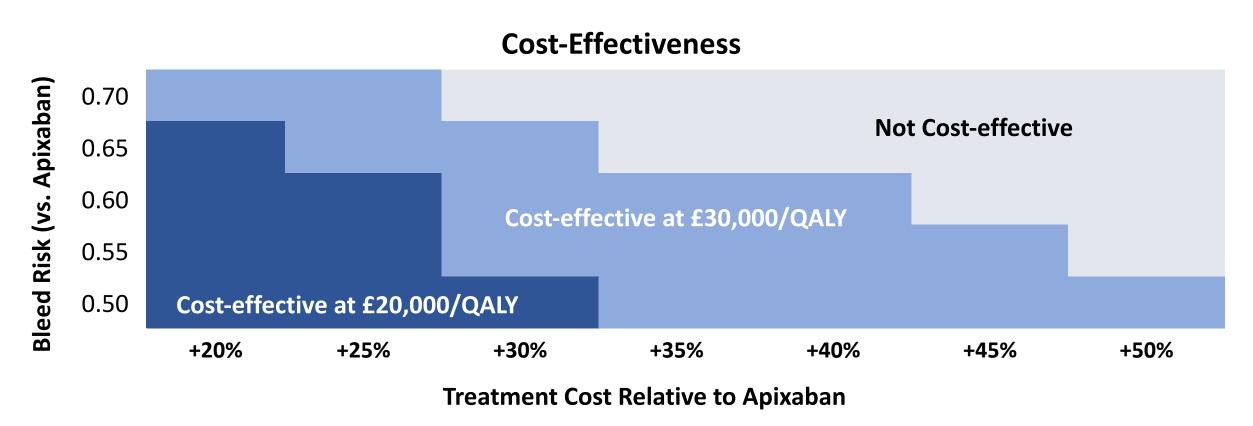
	Rationale			
ually not have	Markov model standard assumption.			
ssumed to vitch to med	As a placeholder, patients on the hypothetical treatment were assumed to switch to dalteparin (40%) or apixaban (60%). Based on a registry study of CAT patients with breakthrough VTE, one-third of dalteparin patients were assumed to switch to apixaban and one-third were assumed to increase their dose. ⁹ For apixaban, it was assumed that two-thirds switched to dalteparin.			
vere t or	Assumption from Li 2019 and Li 2020 models. ^{4,5}			
re assumed 10%	Assumption.			


70.30 (1st cycle) 57.00 (2nd cycle onwards) 237.10 (1st cycle) 197.62 (2nd cycle onwards)

> Monthly Cost, £ 40.00 (1st cycle) 22.00 (2nd cycle on)

9.82

RESULTS **Figure 2.** Potential Bleeds Risk Reduction for a Hypothetical **New Treatment**


Compared to apixaban, a new treatment that reduced the risk of bleeding by at least 23% was cost-effective at a £30k/QALY threshold assuming a monthly cost that is 20% higher than apixaban, the same risk for venous thromboembolisms, and a 30% lower discontinuation rate (Figure 2).

Note: Dotted lines indicate £20,000/QALY and £30,000/QALY, respectively.

Figure 3. Price Threshold Analysis for a Hypothetical **New Treatment**

Considering a range between 0.5-0.7 for the relative risk of bleeding versus apixaban, the new treatment remained cost-effective with a monthly cost up to 28-53% higher than apixaban (Figure 3). The new treatment dominated dalteparin in all scenarios explored.

SUMMARY & CONCLUSION

- treatment option for patients with CAT.
- The model results suggest that a treatment with these characteristics could both improve outcomes in patients with CAT while also demonstrating economic value.

REFERENCES

1. Walker AJ, et al. Eur J Cancer. 2013;49(6):1404-13. 2. Heit JA, et al. Arch Intern Med. 2000;160: 809–815. 3. Kourlaba G, et al. Blood Coagul Fibrinolysis. 2015;26(1):13-31. 4. Li A, Manohar PM, et al. Thromb Res. 2019;180:37-42. 5. Li A, et al. Cancer. 2020;126(8):1736-1748. 6. Data on File. US-claims analysis. 7. National Health Service (NHS). 2019/20 National Cost Collection Data Publication. United Kingdom NHS; 15 September 2021. https://www.england.nhs.uk/publication/2019-20-national-cost-collection-data-publication/. 8. National Institute for Health and Care Excellence. TA341: Apixaban for the treatment and secondary prevention of deep vein thrombosis and/or pulmonary embolism. 2015. Accessed April 15, 2021. 9. Schulman S, et al. J Thromb Haemost. 2015 Jun;13(6):1010-8. 10. Cohen AT, et al. Thromb Haemost 2017;117(1):57-65. 11. Jones KC, Burns A. Unit Costs of Health and Social Care 2021. Personal Social Services Research Unit; 2021. 177 p. ISBN 978-1-911353-14-0. **12.** Szende A, Janssen B, Cabases J, eds. Self-Reported Population Health: An International Perspective based on EQ-5D. Dordrecht (NL): Springer; 2014. **13.** Sullivan PW, et al. *Med Decis Making*. 2011;31(6):800-804. **14.** Naik H, et al. *Patient*. 2017;10(1):105-115. **15.** Locadia M, et al. *Med Decis Making*. 2004;24(6):625-633. **16.** Ghofrani HA, et al. *N Engl J Med*. 2013;369(4):319-329. **17.** Lenert LA, et al. J Am Med Inform Assoc. 1997;4(1):49-56. 18. Pickard S, et al. Stroke. 2004; 35:607-12. 19. Joint Formulary Committee. (2021). British national formulary 85. BMJ Publishing and the Royal Pharmaceutical Society.

DISCLOSURES & CONFLICTS OF INTEREST

- AE: Stratevi, LLC (current employment)
- DB: Anthos Therapeutics (current employment)
- NM: Anthos Therapeutics (current employment)
- AY: Anthos Therapeutics (former employment)
- YK: MYRA Life Science Services (current employment, consultant to Anthos)

• An effective treatment that reduces the risk of bleeding and offers improved adherence is a potentially cost-effective

• This study was conducted by Stratevi, LLC with financial support provided by Anthos Therapeutics, Inc.

