VALUE-BASED PRICING OF AN EBOLA VACCINE IN RESOURCE-CONSTRAINED COUNTRIES BASED ON COST-EFFECTIVENESS ANALYSIS

Mavis Obeng-Kusi, MPharm, PhDCand.^{1;} Denise Roe, PhD²; Brian Erstad, PharmD¹; Ivo Abraham PhD¹ ¹R Ken Coit College of Pharmacy; University of Arizona, Tucson, AZ; ²Mel & Enid Zuckerman College of Public Health, University of Arizona, Tucson, AZ

R. Ken Coit College of Pharmacy Introduction

•Pricing, affordability, and access are important deliberations around infectious disease interventions.¹ •Fair pricing incentivizes development and ensures value and access for patients.¹

Objective

•To use ebola virus disease (EVD) as exemplar to elucidate the estimation of a value-based price (VBP) for a vaccine package.

•To consider how the price compares across selected countries that have experienced EVD outbreaks.

Method

A dynamic transmission model simulated EVD outbreaks in Democratic Republic of Congo, Liberia, Sierra Leone, Uganda

Cost-effectiveness of the vaccine package – composed of the vaccine, storage, maintenance, and administration - for vaccination toward herd immunity was estimated.

The "QALY-capped" approach was used to estimate the price based on value in terms of DALYs and WTP = GDP per capita.

Sensitivity analyses were conducted to assess the influence of parameter uncertainty on the model.

Fig. 1 Model structure

Flow chart pf steps for calculating VBP Cost-effectiveness threshold , Multiply by DALYs averted DALYs averted price component Add total cost of EVD without vaccination Cumulative price of ED with vaccination Cumulative VBP of vaccine package for all vaccinated L Divide by number of vaccinated people VBP per unit of vaccine package

Table 1 Model input parameters											
	DRC ²	Liberia ²	Sierra Leone ²	Uganda ³							
Γransmission rate ($β$)/day	0.33	0.16	0.13	0.50							
ncubation rate (ξ)/ day	0.19	0.08	0.1	0.08							
nfectious rate (γ) / day	0.18	0.07	0.05	0.1							
Case fatality rate	0.14	0.08	0.1	0.12							
Basic reproductive number (R ₀)	1.83	2.02	1.81	2.7							
Median age (years)	19.2	19.4	19.4	16.7							
ife expectancy (years)	60.97	64.1	54.7	63.37							
GDP per capita (\$)	556.80	583.30	484.50	817.00							

Fig. 2 Flow chart of VBP calculation

Results

•Vaccination resulted in increased total costs while decreasing DALYs.

•Averting a DALY was estimated to cost \$73.43 (Uganda), \$94.51 (DRC), \$ 101.63 (Liberia), and \$666.49 (Sierra Leone).

•The maximum cost of the vaccine package based on its value was \$22741 (Uganda), \$20498 (DRC), \$894 (Liberia), and \$88 (Sierra Leone).

•In Uganda and DRC, the vaccine package has 100% probability of cost-effectiveness at WTP thresholds of approximately \$175 and \$185.

Table 2 Country-specific VBP of vaccine package

Country	Cost with vax (\$)	DALYs with vax	Cost without vax (\$)	DALYs without vax	Cost averted (\$)	DALYs averted	ICER (\$/DALY averted)	VBP (\$)
DRC	6.804.551	187	4.723.216	22,209	2.081.335	22.022	94.51	20498
Liberia	6,821,783	50	6,738,990	864	82,793	815	101.63	894
Sierra Leone	6,820,836	42	6,751,731	146	69,105	104	666.49	88
Uganda	6,818,167	81	5,411,455	19239	1,406,712	19,157	73.43	22741

Fig. 3 Cost effectiveness plane

Fig. 4 Cost effectiveness plane

Discussion

•Vaccination is more cost-effective with higher transmission rates.

• VBP for the vaccine package is directly proportional to both cost-effectiveness and GDP per capita.

• VBP reflects both the clinical and economic benefits of the intervention.

•WTP threshold acts as a control on price, within the intervention's cost offsets as well as its incremental effectiveness.

Conclusion

•"QALY-cap" approach is an easily comprehensible method for determining the VBP of a vaccine using a cost-effectiveness analysis.

•Choice of data, population characteristics, disease dynamics, and others are among factors that need to be considered when comparisons are made across countries.

References

- Claxton K, Briggs A, Buxton MJ, et al. Value-based pricing for NHS drugs: an opportunity not to be missed? BMJ
- 2008;336(7638):251-254. doi:10.1136/bmj.39434.500185.25. Chowell G, Hengartner NW, Castillo-Chavez C, Fenimore PW, Hyman JM. The basic reproductive number of Ebola and the effects of public health measures: the cases of Congo and Uganda. Journal of Theoretical Biology. 2004;229(1):119-126. doi:10.1016/j.jtbi.2004.03.006.
- Rivers CM, Lofgren ET, Marathe M, Eubank S, Lewis BL. Modeling the Impact of Interventions on an Epidemic of Ebola in Sierra Leone and Liberia. PLoS Curr. 2014;6:ecurrents.outbreaks
- Legrand J, Grais RF, Boelle PY, Valleron AJ, Flahault A. Understanding the dynamics of Ebola epidemics. Epidemiology & Infection 2007;135(4):610-621.