Health Technology Assessment for Gene Therapies: Are Our Methods Fit for Purpose?— A Health Economist's Perspective

Louis P. Garrison, PhD Professor Emeritus The CHOICE Institute, School of Pharmacy, University of Washington, Seattle WA, USA

ISPOR International Meeting Washington DC, USA March 18, 2022

Disclosures and Disclaimer

- I have received consulting fees and research support in relation to gene therapy economics from UniQure, BioMarin, Bayer, Novartis, and Pfizer.
- These are my views and not necessarily those of any co-authors.

What is the issue?

Gene-targeted therapies are in development for a range of severe and rare health conditions.

- They involve an "one-time", upfront treatment with the health gains (in terms of length of life and quality of life) over many years.
- That health gain can be very large—hence, the "value" is very large.
- Uncertainties make it difficult to calculate that value at launch.

Two questions:

- 1. How do we finance these payments?
- 2. Are we providing an appropriate reward or incentive for the innovation? How should that reward be determined?

ISPOR Special Task Force (2018)

Recommendation II (of VI): Base health plan coverage and reimbursement decisions on an evaluation of the incremental costs and benefits of healthcare technologies as is provided by cost-effectiveness analysis.

1.Cost-per-QALY analyses have strengths and limitations

2.Frameworks that **focus on coverage/reimbursement** should **consider cost per QALY, as a starting point**

3.Consider elements not normally included in CEAs (e.g., severity of illness, equity, risk protection) but **more research needed**.

Source: STF Final Report, ViH, Feb. 2018

Rapid Growth in the Gene Therapy Pipeline

Pipeline Therapies by Category

Gene Therapy Pipeline

The number of gene therapy clinical trials has significantly increased over the last 30 years, with an increasing number of investigational new drug (IND) applications^{2,3}

5 IND, investigational new drug.

Figure. with permission from American Society of Gene and Cell Therapy.¹

1. American Society of Gene and Cell Therapy (April 2021). Accessed May 11, 2021. <u>https://asgct.org/global/documents/asgct-pharma-intelligence-guarterly-report-q1-2021.aspx</u> 2. Ginn SL et al. *J Gene Med.* 2018;20:e3015. 3. Eisenman D. *Applied Biosafety: J ABSA International.* 2019;24(3):147-152

CDER's Annual Novel Drug Approvals, 2012-2021

In 2021:

- 54%— as first-in-class
- **52%—for rare or orphan diseases**
- 28%—accelerated approval
- 28%—as breakthrough therapies
- 68%—designated Priority Review

New drugs:

- High risk/high reward
- Global public goods
- Few annually
- Productivity flat over time
- Mix constantly changing

Lifetime Incremental Quality-Adjusted Life-Years Gained of Gene-Targeted versus Chronic Treatment

Per-Patient Incremental QALY Gain Estimates

Gene-targeted therapies can provide large improvements in expected QALYs gained.

Sources:

7

Lin L et al. Cardiovascular Drugs Ther 2015; 29: 187-197 Zimmermann M et al. *Value Health Reg Issues*. 2019;22(2):161-167.;. ICER (2019). Accessed May 27, 2021. <u>https://icer.org/wp-content/uploads/2020/10/Valuing-a-Cure-Technical-Brief.pdf</u>

ISPOR Value Flower: Elements of Value to Consider in Assessing Gene-Targeted Therapies

Gene-targeted therapies can provide clinical and economic value by reducing uncertainty.

ARTICLE IN PRESS

ScienceDirect

Contents lists available at **sciencedirect.com** Journal homepage: **www.elsevier.com/locate/jval**

Methodology

Hemophilia Gene Therapy Value Assessment: Methodological Challenges and Recommendations

Louis P. Garrison, PhD, Ed Pezalla, MD, MPH, Adrian Towse, MA, MPhil, Hongbo Yang, PhD, Elizabeth Faust, MBA, MPH, Eric Q. Wu, PhD, Nanxin Li, PhD, MBA, Eileen K. Sawyer, PhD, Michael Recht, MD, PhD, MBA

ABSTRACT

Six areas of methodological challenges

	Key Methodological Challenges		Recommendations
 Imn Lim the No 	naturity of evidence and cure definition ited follow-up data are currently available to assess long-term benefits of hemophilia gene therapies consensus definition of cure in hemophilia	•	Durability and cure assumptions should be assessed for each specific product based on clinical evidence, clinical input, and biological plausibility Post-approval registry/real-world data should be collected to help address uncertainty when feasible
 Asson On Clin bas 	sessment of comparative effectiveness based single-arm trials ical evidence for gene therapy in hemophilia are ed on single-arm trials		Synthetic historical control and lead in, self-controlled trial data should be considered in value assessment
 Imp Ger imp Pati of h 	nortant clinical and patient-centric outcomes neric utility measures may not capture the true act of hemophilia on QOL ient-centric outcomes beyond clinical outcomes are igh value in hemophilia		Adding hemophilia-specific bolt-on questions to generic QOL instruments or by adjusting patient-reported values to those of the general population CoreHem and patient-centric outcomes are valuable to assess
 Val Larger offs be of 	uation of cost-offsets ge up-front cost with potential for substantial cost- ets: to what extent should long-term cost-offsets considered in assessing value?		Cost-offset estimates should use real-world comparator costs
 5. Add Nee unc 	dressing value uncertainties ad to address price uncertainties ensuing from value ertainties		Outcome-based contracting should be explored to address price uncertainties ensuing from long-term outcomes uncertainties
 6. Per Ger 	spectives of evaluation he therapy may impact indirect costs in addition to		Both the healthcare system and societal perspective are valuable and should be presented together

METHODOLOGY

3

Comparing Lifetime Medical Costs of Gene Therapies

Projected Lifetime Medical Costs (2019 USD) Associated with Treatments for Spinal Muscular Atrophy, Hemophilia A, Cystic Fibrosis, and Hereditary Angioedema*

Comparisons of the costs of gene therapies should take a patient's lifetime perspective.

BPA, bypassing agent; C1EI, C1 esterase inhibitor; E/T/I, elexacaftor/tezacaftor/ivacaftor (Trikafta); FVII, factor VIII; IV, intravenous; L/I, lumacaftor/ivacaftor;

OA, onasemnogene abeparvovec; SC, subcutaneous; T/I, tezacaftor/ivacaftor (Symdeko); USD, US dollar; VR, valoctocogene roxaparvovec. Garrison LP et al. J Manag Care Spec Pharm. 2021;27(5):674-681.

PERSPECTIVES ON AUGMENTING COST-EFFECTIVENESS ANALYSES

Augmenting Cost-Effectiveness Analysis for Uncertainty: The Implications for Value Assessment—Rationale and Empirical Support

Louis P. Garrison, Jr., PhD; Bernarda Zamora, PhD; Meng Li, PhD; and Adrian Towse, MS, MPhil

Recent Literature Summary— Elements Related to Uncertainty

Element/Study	Context	Method	Monetary Effect Above Conventional ICER	
Insurance value: financial ris	k protection	·	·	
Verguet et al., 2013 ¹⁴	Rotavirus-India (I) and Ethiopia (E)	Dynamic CEA modeling	Financial risk protection (FRP) of \$16k (I) and \$8K (E) per 1 million households. Largest FRP in lowest income quintile.	
Verguet et al., 2015 ¹⁵	Tuberculosis in India	Universal public finance model (90% coverage)	Per million people in India, insurance value is \$9,000, and 80% would accrue to the bottom 2 quintiles.	
Insurance value: financial an	d physical health risk protection	•		
Shih et al., 2016 ¹⁶	Multiple sclerosis in United States	Parameterized utility function	33% of conventional value	
Lakdawalla et al., 2017 ¹⁰	General U.S. population	Numerical exercise with a parameterized utility function	38%-62%: The physical insurance values greatly exceed the financial insurance value	
Real option value				
Sanchez et al., 2012 ¹⁷	Small molecule medicine for chronic myeloid leukemia in United States	Projection of mortality trends	9% of conventional survival benefit	
Snider et al., 2017 ¹⁸	Monoclonal antibody medicine for renal cell carcinoma and lung cancer in United States	Projection of mortality trends	5%-18% of conventional survival benefit	
Li et al., 2019 ¹⁹	Monoclonal antibody medicine for metastatic melanoma in United States	Projection of mortality trends and new drug approvals and economic modeling	Incremental QALY gained increased by 5%-8% and ICER decreased by 0%-2%	
Value of hope	•	1 24	•	
Lakdawalla et al., 2012 ¹³	Treatments for metastatic melanoma and metastatic breast cancer in United States	Discrete choice/contingent valuation	WTP \$35,000 for a 1 standard deviation increase in survival	
Shafrin et al., 2017 ²³	Treatments for advanced stage mela- noma or lung cancer in United States	Patient and physician surveys	Majority of patients prefer higher variance in survival; physicians do not	
Shafrin et al., 2018 ²⁴		Economic estimation	0.04 QALY	
Value of knowing				
Neumann et al., 2012 ²⁵	Predictive testing for diseases with no preventive option in United States	Stated-preference study	\$109-\$263 per test	
Goldman et al., 2013 ²⁶ (Sood et al., 2013, technical analysis) ²⁷	Dx testing in personalized medicine: RA patients at risk for CV event on an NSAID in United States	Population economic modeling	Test generates \$1,284 per patient	

Journal of Managed Care & Specialty Pharmacy JMCP April 2020 Vol. 26, No. 4 www.jmcp.org

Chaste for updates

Health technology assessment with risk aversion in health Darius N. Lakdawalla^{a,b,*}, Charles E. Phelps^c

	ScienceDirect	
SEVIER	Contents lists available at sciencedirect.com journal homepage: www.elsevier.com/locate/jval	
alth Technology Asse neralized Risk-Adjust us N. Lakdawalla Charles E. Phelp The European Journal of Health Econom	essment With Diminishing Returns to Hea ted Cost-Effectiveness (GRACE) Approach ^{xs, PhD}	lth: The
ORIGINAL PAPER		Check
	a and implementing generalized rick adju	sted
A guide to extending cost-effectiveness (G	iRACE)	

"... cost-effectiveness decision thresholds should be about 5 times higher for severe Alzheimer's disease than for peptic ulcer disease."

In my view: this framework is a pathbreaking advance.

The Generalized Risk-Adjusted Cost-Effectiveness (GRACE) Model

Lakdawalla-Phelps (2020a;b;c): Formal development of augmented CEA

Incorporates uncertainty and risk aversion:

- Variance in health outcomes
 - Not just mean effects
- Risk aversion for health outcomes
- Baseline severity of disease
- Likelihood of cures/value of hope

Implies \rightarrow

- Cost-effectiveness thresholds should vary, and they should be higher for rare, health-catastrophic diseases
- Variance in outcomes generally reduces value, except for cures.

Conclusion: Are our methods fit for purpose for gene therapies?

They provide a good starting point, but ...

- We need to expand the concept and measurement of value to reflect:
 - The impact of baseline severity of disease on cost-effectiveness threshold
 - The impact of uncertainty on reducing value given health plan subscribers' risk aversion.
- We need to recognize a different role for real-world evidence before and after launch.

Thanks!

lgarrisn@uw.edu