Tepotinib for the treatment of adult patients with metastatic non-small cell lung cancer harboring *MET*ex14 skipping alterations:

A US cost-effectiveness analysis

<u>Mo Yang</u>¹, Helene Vioix², Rameet Sachdev³, Matthew Stargardter³, Jon Tosh⁴, Boris Pfeiffer², Paul K. Paik⁵

¹EMD Serono, Rockland, MA, USA; ²The healthcare business of Merck KGaA, Darmstadt, Germany; ³Evidera, Bethesda, MD, USA; ⁴Evidera, London, United Kingdom; ⁵Memorial Sloan Kettering Cancer Center, New York, NY, USA

CONCLUSION

 From the US Medicare perspective, tepotinib could be cost-effective relative to capmatinib in treating patients with mNSCLC harboring METex14 skipping

INTRODUCTION

- In 2020, lung cancer was estimated as the third costliest tumor type (\$23.8 billion)¹
- Lung cancer is a leading cause of cancer-related death in the US, accounting for an estimated 21.4% of all cancer deaths in 2022;² NSCLC accounts for approximately 80–85% of cases^{3,4}
- Approximately 3–4% of patients with NSCLC harbor METex14 skipping, which has been recognized as an oncogenic driver⁵
- Results from Phase II clinical studies indicate that the MET TKIs tepotinib (VISION; NCT02864992) and capmatinib (GEOMETRY mono-1; NCT02414139) may prolong survival in patients whose tumors harbor METex14 skipping;^{6,7} both drugs have been approved by the US FDA, but their economic implications remain unclear

OBJECTIVE

 To compare the cost-effectiveness of tepotinib and capmatinib, from the US Medicare perspective, for treatment-naïve (1L) and previously treated (2L+) adult patients with mNSCLC harboring METex14 skipping

METHODS

- A three-state (progression-free, progressed, and deceased) partitioned survival model was developed to evaluate the cost-effectiveness of tepotinib versus capmatinib from the perspective of US Medicare payers (Figure 1)
 - TTD curves stratified patients into those remaining on treatment and those no longer receiving therapy
 - Since FDA approvals for tepotinib and capmatinib do not specify line of therapy,^{8,9} the model calculates the weighted average of outcomes for 1L and 2L+ using the observed baseline distribution of patients in VISION (i.e. 44.5% 1L, 55.5% 2L+)⁷

METHODS (cont.)

Figure 1. Model structure

- Standard parametric survival analysis techniques were applied to patient-level data from VISION (Feb 2021 data cut-off; Cohort A [n=152]; tissue biopsy only)^{7,10} to extrapolate beyond the trial's follow-up duration
 - Exponential distributions were used to model OS, PFS, and TTD, as these demonstrated goodness of fit and were considered by clinical experts to exhibit clinical plausibility
 - OS and PFS for capmatinib were estimated by applying HRs derived from a MAIC study,¹¹ and TTD was based on the median duration of exposure reported in GEOMETRY mono-1⁶ (**Table 1**)

Table 1. Inputs for the reference case

Input	Tepotinib		Capmatinib		Reference	
Clinical efficacy	1L	2L+	1L	2L+		
OS HR vs tepotinib PFS HR vs tepotinib	NA NA	NA NA	1.19 1.18	1.32 1.67	VISION analysis; ¹² MAIC with prognostic variables adjusted ¹¹	
TTD, capmatinib (months [median])	NA	NA	11.1	5.1	VISION analysis; ¹² Wolf 2020 (duration of exposure as proxy) ⁶	
Drug acquisition						
Drug acquisition cost (WAC)	\$20,899		\$9,469		IBM ¹³	
Unit size	225 mg		200 mg			
Unit per package	60		56		EMD Serono; FDA labels ^{8,9}	
Drug dosing details	450 ו	mg QD	400 mg BID			
Subsequent treatment costs						
One-off cost	\$14,428		\$14,335		VISION CSR; ¹⁴ KoL feedback	
Disease management and treatment m	onitori	ng costs				
DM: Pre-progression (per cycle)	\$874		\$874		CMS.gov; ¹⁵ Dalal 2018; ¹⁶ Graham 2016; ¹⁷ KoL feedback	
DM: Post-progression (per cycle)	\$5,462		\$5,462			
Disease progression (one-off)	\$1,079		\$1,079		Georgieva 2018 ¹⁸	
Terminal care (one-off)	\$4,063		\$4,063		Chastek 2012 ¹⁹	
Treatment monitoring (per cycle)	\$25		\$25		CMS.gov; ¹⁵ KoL feedback	
Utility weights						
Progression-free	0.72				VISION trial ²⁰	
Progressed disease	0.63				VISION CHAI	
AE management						
Total disutility due to Grade 3–4 AEs (one-off decrement; assumed to apply for a single model cycle)	-0.0010		-0.0015		Institute for Clinical and Economic Review 2016; ²¹ NICE TA578 ²²	
Total Grade 3–4 AE incidence and costs (one-off)	\$2,492		\$2,685		CMS.gov; ¹⁵ VISION CSR; ¹⁴ FDA labels; ^{8,9} Shimizu 2019; ²³ Patel 2009 ²⁴	

- The model incorporated drug acquisition, AE and disease management, treatment monitoring, and subsequent treatment expenditures (inflated to 2021 USD; see Table 1)
- On discontinuation, patients accrued drug acquisition and administration expenses associated with post-tepotinib therapies. The composition and duration of treatment were derived from VISION (based on mean PFS for subsequent therapy [3.0 months])¹⁴
- HRQoL in the model reflected progression status and occurrence of AEs (**Table 1**)
- Health state (pre- and post-progression) utilities were based on statistical analyses of VISION EQ-5D data²⁵
- Other model settings included:
 - 20-vear time horizon
 - Monthly model cycle, in alignment with dosing cycles
 - 3% annual discount rate for health and cost outcomes
- Results were interpreted with reference to the range of WTP thresholds recommended by the Institute for Clinical and Economic Review (\$100,000-\$150,000/QALY)

- Tepotinib was found to be cost-effective versus capmatinib in the base-case analysis (Table 2)
- Tepotinib was associated with 0.41 incremental discounted LYs (2.10 and 1.69 for tepotinib and capmatinib, respectively) and 0.29 QALYs (1.43 and 1.15, respectively) over the model horizon
- Tepotinib generated \$30,205 in incremental discounted costs (\$343,721 and \$313,516 for tepotinib and capmatinib, respectively) over the cohort's lifetime
- This was primarily due to differences in drug acquisition (\$257,939 vs \$235,813 for capmatinib) and disease management costs (\$76,559 vs \$67,429 for capmatinib)
- The resultant base-case ICER (\$105,173/QALY) was well within the range of WTP thresholds
- Cost-effectiveness vs capmatinib was preserved in nearly all scenarios considered (**Table 3**)

	Overall (line-agnostic)				
	Tepotinib	Capmatinib			
Health outcomes					
Total QALYs	1.4334	1.1462			
Progression-free LYs	1.1861	0.8687			
Post-progression LYs	0.9109	0.8203			
On-treatment LYs	0.9763	0.9168			
Off-treatment LYs	1.1207	0.7722			
Total LYs	2.0970	1.6890			
Cost outcomes					
Drug acquisition	\$257,939	\$235,813			
Administration	\$0	\$0			
Treatment monitoring	\$294	\$276			
AE management	\$2,492	\$2,685			
Disease management	\$76,559	\$67,429			
Subsequent treatment	\$6,436	\$7,313			
Total costs	\$343,721	\$313,516			
Incremental results					
Incremental costs	-	\$30,205			
Incremental LYs	-	0.4080			
Incremental QALYs	-	0.2872			
ICER (\$/LY)	-	\$74,036			
ICER (\$/QALY)	-	\$105,173			

Scenario description	Incremental costs	Incremental QALYs	ICER/ QALY	
Base-case analysis	\$30,205	0.2872	\$105,173	
Assume treat until progression	\$95,257	0.2872	\$331,680	
Include biomarker testing costs	\$30,205	0.2872	\$105,173	
Include the vial sharing (IV therapies only)	\$30,211	0.2872	\$105,194	
Employ alternative DM resource utilization	\$27,801	0.2872	\$96,802	
Exclude subsequent treatment expenditures	\$31,082	0.2872	\$108,225	
Double subsequent treatment frequencies	\$29,328	0.2872	\$102,120	
1L patients only	-\$47,188	0.2195	Dominant	
2L+ patients only	\$92,311	0.3415	\$270,284	
Literature-based PF and PD utility values	\$30,205	0.2494	\$121,126	
Exclude AE disutilities	\$30,205	0.2867	\$105,355	
5-year time horizon	\$25,436	0.2214	\$114,881	
10-year time horizon	\$29,447	0.2794	\$105,383	
5% cost and health outcomes discount rates	\$29,081	0.2713	\$107,202	
0% cost and health outcomes discount rates	\$32,188	0.3151	\$102,157	
Tepotinib log-normal PFS and OS	\$34,505	0.4043	\$85,342	
Apply population weighting from Flatiron	\$14,610	0.2736	\$53,408	
Apply \$35 co-payment	\$30,654	0.2872	\$106,735	
Apply 10% co-insurance	\$28,079	0.2872	\$97,768	

- Deterministic sensitivity analysis results underscore the sensitivity of base-case results to uncertainty in the cost and comparative efficacy of tepotinib and capmatinib (**Figure 2**)
- Estimated net monetary benefit was most sensitive to monthly drug acquisition costs for both tepotinib and capmatinib
- Probabilistic sensitivity analysis results aligned closely with the base-case, and suggest tepotinib may be cost-effective compared with capmatinib at conventional US cost-effectiveness thresholds
 - 61.9% of model iterations produced ICERs less than \$150,000/QALY
 - Tepotinib was more effective than capmatinib in 94.3% of model runs

Figure 2. Deterministic sensitivity analysis tornado diagram

Abbreviations: 1., first line; 2.1., second line or later; AE, adverse event; BID, twice daily; CMS, Centers for Medicare & Medicaid Services; CSR, cinical statistical report; PD, progression-free; PFS, pro

