Impact of Treatment Duration on the Potential Cost-Effectiveness of Disease-Modifying Therapies for the Treatment of Early Symptomatic Alzheimer's Disease

Off treatment

Severe AD

Malaz Boustani¹, Erin G. Doty², Louis P. Garrison Jr³, Lee J. Smolen⁴, Mark Belger², Timothy M. Klein⁴, Daniel R. Murphy⁴, Russel T. Burge², Joseph A. Johnston²

^{1.} Indiana University, Indianapolis, IN; ^{2.} Eli Lilly and Company, Indianapolis, IN; ^{3.} University of Washington, Seattle, WA; ^{4.} Medical Decision Modeling Inc., Indianapolis, IN

BACKGROUND

- Amyloid-targeting monoclonal antibodies (mAbs), a novel class of disease-modifying therapies (DMTs) for Alzheimer's disease (AD), have demonstrated efficacy in clinical studies. 1-4
- With limited follow-up data from clinical studies, uncertainty exists around optimal treatment (Tx) duration with DMTs.
- In June 2021, US FDA granted accelerated approval for the first amyloid-targeting mAb, aducanumab, for the Tx of AD.5
- An economic analysis of aducanumab reported an incremental cost-effectiveness ratio (ICER) of \$1.33 million per quality-adjusted life years (QALYs) gained vs. supportive care based on:
- Lifetime incremental costs of \$204,000.
- Lifetime incremental gain of 0.154 QALYs.⁶
- Lilly's Phase 2 TRAILBLAZER-ALZ study of donanemab was the first study on AD DMT, to meet its pre-specified primary endpoint and demonstrate statistically significant

- slowing of cognitive and functional decline when used for a limited duration of time.
- Given the anticipated approval of additional DMTs for AD, we assessed the cost-effectiveness of hypothetical DMTs with different efficacy profiles and duration of use:
- We speculate that cost-effectiveness will be sensitive to multiple factors, including drug cost, magnitude and duration of benefit, care partner impacts, Tx duration etc.
- Quantifying the potential cost-effectiveness of DMTs under a range of assumptions will enhance the understanding of the potential value of DMTs with different attributes.

OBJECTIVE

To estimate the potential cost-effectiveness of hypothetical DMTs administered for different Tx durations in patients with early symptomatic AD:

- **Continuous Tx duration**
- Fixed Tx duration
- Limited but variable Tx duration

- Model Framework (Fig. 1) Markov state-transition simulation model with life-time horizon, based in part on Institute for Clinical and Economic Review model for aducanumab.6
- Annual discounting of costs and outcomes: 3% Perspective: Healthcare system (Payer) and Modified Societal.
- Comparator: Best supportive care (BSC).

Model Assumptions and Inputs

 In accordance with the previous model for aducanumab,⁶ except as noted below and in **Table 1**.

Clinical Inputs

Methods

Study Design

- Relative risk (RR) of AD progression (base case): 0.70 for progression from MCI, and 0.70 for progression from mild AD dementia, based on expected efficacy from amyloid-targeting therapies.

Tx Duration Scenarios

- Continuous Tx until progression to severe AD dementia, with Tx benefit until progression to moderate AD dementia and only while on Tx.
- Fixed Tx duration of 18 months (mo.) or until progression to severe AD dementia, with continuing Tx benefit until progression to severe AD dementia.
- Limited but variable Tx duration (max 18 mo.), with continuing Tx benefit until progression to severe AD dementia.
- 40% discontinue at 6 mo. due to amyloid clearance, rest continuing for 18 mo. (or until progression to severe AD dementia).
- Patients incurred \$4,000 for diagnostic test at 6 mo. to assess amyloid
- The modified societal perspective also included patient productivity costs and, for care partners, their medical costs, productivity costs, and disutilities.

Scenarios and One-way Sensitivity Analysis (OWSA)

- Payer perspective: evaluated impact of Tx efficacy (RR: 0.7 [base-case] 0.9, and 0.5), duration of Tx benefit (until severe AD dementia [base-case], 4- and 8- years [yrs]), and Tx cost (\$56,000 [base-case] and \$28,000 |scenario|
- In OWSA, model inputs were varied by ±20% or within fixed limits one at a

Table 1. Key Model Inputs

Model Input	Value	Perspective		Source
		Payer	Modified Societal	Jource
Clinical Inputs				
RR, hypothetical DMT+BSC vs. BSC alone				
Progression from MCI	0.7	Х	X	Assumption
Progression from Mild AD dementia	0.7	Х	X	Assumption
Progression from Moderate AD dementia	1.0	Х	X	Assumption
Annual transition probabilities to LTC				
MCI due to AD	2.40%	Х	X	Calculated
Mild AD dementia	3.80%	X	X	Neumann et al., 1999 ⁷
Moderate AD dementia	11.00%	Х	X	
Severe AD dementia	25.90%	Х	X	
RR of death by health state				
MCI due to AD	1.82	Х	X	-Andersen et al., 2010 ⁸
Mild AD dementia	2.92	X	X	
Moderate AD dementia	3.85	X	X	
Severe AD dementia	9.52	X	X	
Probability of Tx discontinuation due to ARIA	10%	Х	X	FDA AdComm Briefing Document ⁹
Utility Inputs				
Patient disutilities, community setting				
MCI due to AD	-0.17	Х	X	Neumann et al., 1999 ¹
Mild AD dementia	-0.22	Х	X	Na.,
Moderate AD dementia	-0.36	Х	X	Neumann et al., 1999 ^{7,}
Severe AD dementia	-0.53	Х	Х	
Patient disutilities, LTC setting				
MCI due to AD	-0.17	Х	X	Assumption
Mild AD dementia	-0.19	Х	Х	Neumann et al., 1999 ⁷

Dead

Fig. 1. AD Tx Model Flow Diagram

On treatment

STUDY DESIGN

MCI due to AD

Table 1. Key Model Inputs (contd.)

Disease progression under BSC

Model Input	Value	Perspective		Source	
, and and an place		Payer	Modified Societal		
Moderate AD dementia	-0.42	Х	X	Neumann et al., 1999 ^{7, 10}	
Severe AD dementia	-0.59	Х	Х		
Care partner disutilities, community setting					
and LTC setting					
MCI due to AD	-0.03		X	Neumann et al., 1999 ¹⁰	
Mild AD dementia	-0.05		X	Noumann et al. 1000 8	
Moderate AD dementia	-0.08		X	Neumann et al., 1999 & Mesterton et al., 2010 ^{7, 11}	
Severe AD dementia	-0.10		X	iviesterton et al., 2010, "	
Cost Inputs					
Hypothetical DMT annual cost	\$56,000	Х	X	Assumption	
Annual direct medical cost	\$8,840	Х	X	Leibson et al., 2015 ¹²	
Direct medical multiplier costs					
MCI due to AD	1.12	Х	X		
Mild AD dementia	1.56	Х	X	Leibeen et al. 201512	
Moderate AD dementia	1.93	Х	X	Leibson et al., 2015 ¹²	
Severe AD dementia	1.93	Х	X		
LTC cost per month	\$7,186	Х	X	Administration on Aging ¹³	
Care partner direct medical costs per mo.					
MCI due to AD	\$447		X	Robinson et al., 2020 ¹⁴	
Mild AD dementia	\$938		X	Assumption based on	
Moderate AD dementia	\$1,501		Х	Robinson et al., 2020 &	
Severe AD dementia	\$1,876		X	Mesterton et al., 2010 ^{11, 14}	
Brain MRI cost per scan	\$255.33	Х	Х	CMS physician fee schedule ¹⁵	

Abbreviations: AD=Alzheimer's disease; ARIA=amyloid-related imaging abnormality; BSC=best supportive care; DMT=diseasenodifying therapy; LTC=long-term care; mo.=month; MCl=mild cognitive impairment; RR=Relative risk. Incremental ICER (Payer Perspective)

- ICER (\$/QALY gained for DMT) was \$590,689 for continuous Tx, \$168,272 for fixed Tx, and \$134,347 for limited but variable Tx (Fig. 2).
- Fig. 2 also presents ICERs for key scenario analyses.
- Table 2 presents the costs and QALYs gained from payer perspective

Fig. 3 Y axis: the range presents the Low and High values. Abbreviations: AD=Alzheimer's disease; Com=community; ICER=incremental cost-effectiveness ratio; LTC=long-term care; MCI=mild cognitive impairment; QALY=quality-adjusted life years; RR=Relative risk; Tx=treatment.

KEY RESULT

Fig. 2. ICER for Base-case and Scenarios (DMT vs. BSC) – **Payer Perspective**

Base Case (Payer Perspective)

Table 2. Base-Case Findings (DMT vs. BSC)

	Continuous Tx	Fixed Tx	Variable Tx
Total Costs	\$275,076	\$78,397	\$62,591
Tx Costs	\$269,758	\$73,067	\$53,678
LTC Costs	\$1,577	\$1,587	\$1,587
Patient Direct Medical Costs	\$3,741	\$3,743	\$7,326
Total QALYs	0.466	0.466	0.466
Life Years	0.462	0.462	0.462
ICER (\$/QALY gained)	\$590,689	\$168,272	\$134,347

All values are incremental: DMT – BSC. Abbreviations: BSC=best supportive care; DMT=disease-modifying therapy; ICER=incremental cost-effectiveness ratio; LTC=long-term care; QALY=quality-adjusted life year; Tx=treatment.

OWSA – Fixed Tx Duration (Payer Perspective)

■ ICER was most sensitive to: Tx efficacy; initial population severity; Tx annual cost; and Tx efficacy duration (Fig. 3).

Fig. 3. Factors Affecting ICER - Fixed Tx (Base ICER - \$168,272)

■ Result with High Input Value ■ Result with Low Input Value

Limitations

- With uncertainty about magnitude and duration of benefit of current AD DMTs under study, results should be viewed as exploratory and not representative of the cost-effectiveness of any DMT.
- Patient and care partner utilities obtained using generic health-related QoL measures do not adequately capture all relevant domains of interest in AD and likely underrepresent the impact of AD on patients and care partners.
- Accounting for one care partner as opposed to multiple care partners might lead to underestimation of the care partners costs and effects.
- Traditional cost-effectiveness models do not capture many additional elements of value generated by new treatments for AD.¹⁶
- Elements of ISPOR's value flower framework (esp., insurance- and realoption values) are relevant for considering value of Tx for conditions like AD.¹⁷

CONCLUSIONS

- The cost-effectiveness of hypothetical AD DMTs were highly sensitive to duration of Tx, therapy cost, Tx efficacy in slowing AD progression, and duration of Tx benefit.
- Efficacious ADs DMTs used for limited duration or until amyloid plaque clearance have potential to deliver value consistent with accepted cost-effectiveness thresholds.
- Major factors impacting ICER Payer Perspective:
- Continuous Tx: Tx efficacy and Tx annual cost.
- Variable Tx: Tx efficacy, initial population severity, Tx annual cost, and duration of Tx efficacy.

Tornados not shown for Continuous Tx and Variable Tx.

Base Case (Modified Societal Perspective)

Table 3. Base-Case Findings (DMT vs. BSC)

** Includes Incremental QALYs - same as Payer Perspective

	Continuous Tx	Fixed Tx	Variable Tx
Total Costs*	\$261,049	\$64,368	\$48,562
Care partner Medical Costs	(\$2,351)	(\$2,352)	(\$2,352)
Patient Productivity Costs	\$214	\$214	\$214
Care partner Productivity Costs	(\$11,889)	(\$11,891)	(\$11,891)
Total QALYs**	0.473	0.473	0.473
Patient QALYs	0.466	0.466	0.466
Care partner QALYs gained	-0.007	-0.007	-0.007
ICER (\$/QALY gained)	\$552,188	\$136,096	\$102,678
•	•		-

All values are incremental: DMT – BSC. Abbreviations: BSC=best supportive care; DMT=disease-modifying therapy; ICER=incremental cost-effectiveness ratio; QALY=quality-adjusted life year; Tx=treatment. * Includes Tx costs, LTC costs and patient direct medical costs – same as Payer Perspective.

- ICER (\$/QALY gained for DMT) was \$552,188, \$136,096, and \$102,678 for continuous Tx, fixed Tx, and variable Tx, respectively (Table 3).
- Tx costs, LTC costs, patient direct medical costs, and incremental QALYs were identical for modified societal- and payer-perspectives (Table 2).

References: 1) Salloway S, et al. JAMA Neurology. 2022;79(1):13-21. 2) Haeberlein SB, et al. Neurology. 2018;90:S2.004. 3) Mintun MA, et al. New Eng J Med. 2021;384:1691-04. 4) Swanson CJ, et al. Alzheimers Res Ther. 2021;13:80. 5) FDA Grants Accelerated Approval for Alzheimer's Drug. Available on k. Accessed 18 Feb 2022. 6) ICER. Aducanumab for Alzheimer's Disease: Effectiveness and Value. Final Evidence Report and Meeting Summary. 5 August 2021. Available on Click. Accessed 18 Feb 2022. **7)** Neumann PJ, et al. *Neurology*. 1999;52(6):1138-45. **8)** Andersen K, et al. *Dement Geriatr Cogr* Disord. 2010;29(1):61-7. 9) Combined FDA and Application PCNS Drugs Advisory Committee Briefing Document 2020. 10) Neumann PJ, et al. Medical care 1999;37:27-32. 11) Mesterton J, et al. Curr Alzheimer Res. 2010;7:358-67. 12) Leibson CL, et al. Alzheimers Dement. 2015;11:917-32. 13) Administration on Aging. Costs of Care. Vol 20212020. 14) Robinson RL, et al. J Alzheimer's Dis. 2020;75:437-50. 15) Centers for Medicare and Medicaid Services. Clinical Physician Fee Schedule Files2020. **16)** Makin C, et al. *J Med Econ*. 2021;24:764-69. **17)** Lakdawalla DN, et al. *Value Health*. 2018;21:131-39 Acknowledgments: The authors would like to thank Karan Sharma from Eli Lilly and Company for writing support

Disclosures: MB is an employee at Indiana University; LPG Jr is an employee at University of Washington; EGD, MB, RTB, & JAJ are employees and stockholders of Eli Lilly and Company; LJS, TMK, & DRM are employees of Medical Decision Modeling Inc., which was contracted by Eli Lilly to perform the

(https://lillyscience.lilly.com/congress/ispor2022) for a list of all Lilly content presented at the congress.

Other company and product names are trademarks of their respective owners.