Updated Network Meta-Analysis of First-Line EGFR-Targeted Tyrosine Kinase Inhibitor Treatments for Locally Advanced or Metastatic Non-Small Cell Lung Cancer With EGFR-Activating Mutations

Kelly A. Larkin-Kaiser,¹ Tayler Scory,¹ Megan Farris,¹ Keith Wilner,² Jasmina Ivanova³ ¹Medlior Health Outcomes Research Ltd., Calgary, AB, Canada; ²Pfizer Inc., La Jolla, CA, USA; ³Pfizer Inc., New York, NY, USA

Objective

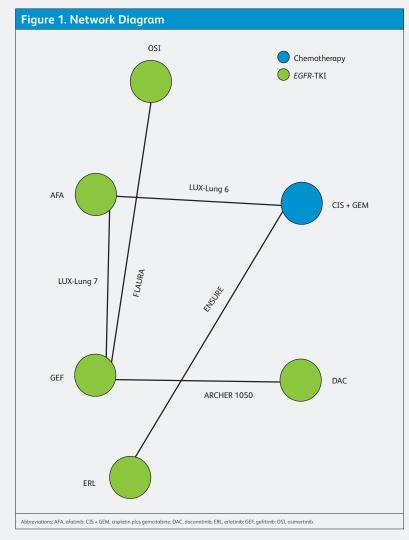
To conduct a network meta-analysis (NMA) utilizing updated/mature randomized controlled trial (RCT) results for overall survival (OS) to examine the efficacy of first-line epidermal growth factor receptor-tyrosine kinase inhibitor (EGFR-TKI) comparators for the treatment of EGFR mutation positive (EGFR+) advanced non-small cell lung cancer (NSCLC).

Conclusion

Dacomitinib showed a numerical improvement of OS compared with other EGFR-TKIs and had the highest probability of being ranked first in the network. Therefore, dacomitinib should be considered as one of the standard first-line treatment options for patients diagnosed with advanced EGFR+ NSCLC.

Background

- Lung cancer is one of the most common cancers, with 2.1 million new lung cancer cases reported globally in 2018.1
- NSCLC represents 85 % of lung cancers with ${>}50\,\%$ being diagnosed with advanced disease.²
- In patients with EGFR+ advanced NSCLC, EGFR-TKIs are recommended for first-line treatment.3,4
- This study uses updated/mature RCT results for OS to update a previously published NMA of EGFR-TKIs.5


Methods

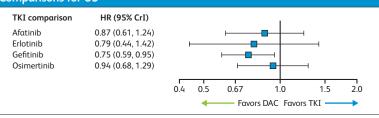
SYSTEMATIC REVIEW

- An initial search included 11 databases and identified RCTs that measured OS published between January 2004 – August 2018.5
- In an update, a manual search included new articles affiliated with the ARCHER 1050⁶ and FLAURA trials⁷ up to November 2019.

STATISTICAL METHODS

Bayesian NMA compared OS among EGFR-TKIs in overall EGFR+ advanced NSCLC population (Figure 1), and in Asian/non-Asian and EGFR exon 19 deletion/exon 21 L858R substitution mutation subgroups.

NMA Results


OVERALL POPULATION

- Five RCTs were included in the NMA.
- Dacomitinib demonstrated a significant improvement of OS vs gefitinib and a numerical improvement of OS vs afatinib, erlotinib, and osimertinib (Table 1 and Figure 2).
- Dacomitinib had the highest probability of being ranked first in the network (50.1 %), followed by osimertinib (24.6 %), erlotinib (15.4 %), and a fatinib (9.1 %).

Table 1. Relative Efficacy HRs and 95% CrIs for all EGER-TK1

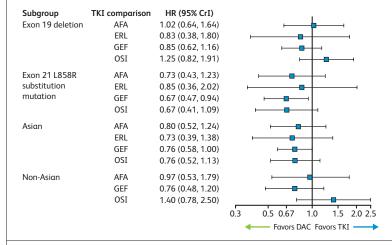
Treatment	Treatment HR (95% CrI)				
	Afatinib	Dacomitinib	Erlotinib	Gefitinib	Osimertinib
Afatinib		0.87 (0.61–1.24)	1.10 (0.69–1.74)	1.16 (0.89–1.52)	0.93 (0.66–1.31)
Dacomitinib	1.15 (0.81–1.64)		1.26 (0.70–2.25)	1.34 (1.06–1.69)	1.07 (0.77–1.47)
Erlotinib	0.91 (0.57–1.45)	0.79 (0.44–1.42)		1.06 (0.62–1.81)	0.85 (0.48–1.51)
Gefitinib	0.86 (0.66–1.12)	0.75 (0.59–0.95)	0.94 (0.55–1.60)		0.80 (0.64–1.00)
Osimertinib	1.08 (0.76–1.52)	0.94 (0.68–1.29)	1.18 (0.66–2.10)	1.25 (1.00–1.56)	

Figure 2. Forest Plots of HRs and 95% CrIs for Dacomitinib vs EGFR-TKI **Comparisons for OS**

Note: x-axis not on a linear sc Abbreviations: CrT_credible in mitinib: EGFR-TKI tvrosine kinase inhibitor: HR. hazard ratio: OS. overall surviva

Electronic Poster

electronic version of this poster may be obtained by scanning this QR code with your sma • QR code are for personal use only and may not be reproduced without permission from 1 mission or to ask questions about the poster please contact Jasmina.Ivanova@pfizer.com pp. Copies of this p on from ISPOR® and the authors of this poster. To req


s: 1. Bray et al., 2018; 2. Cancer Research UK, 2016; 3. Planchard et al., 2018; 4. Wood et al., 2015; 5. Franek et al., 2019; 6. Mok et al., 2019; 7. Ramalingam et al., 2020

ling sources: This work was sponsored by Pfizer Inc. Larkin-Kaiser KA, Scory T, & Farris M are employed by Medlior Health Outcomes Research Ltd, who were paid ultants to Pfizer Inc. Ivanova J & Wilner K are employed by Pfizer and own stock. Medlior was responsible for collection, analysis, and reporting of data, for which it rec

SUBGROUP ANALYSES

- Results of exon 21 L858R substitution mutation and Asian subgroup analyses were consistent with those in the overall population (Figure 3).
- In the exon 19 deletion mutation subgroup, afatinib and osimertinib demonstrated a numerical improvement of OS relative to dacomitinib
- In the non-Asian subgroup, osimertinib demonstrated a numerical improvement of OS relative to the other EGFR-TKIs; however, the network for non-Asian subgroup included only 3 RCTs with small sample sizes of non-Asian patients in each trial.

Figure 3. Forest Plot of HRs and 95% CrIs for Dacomitinib vs EGFR-TKI Comparisons for OS in all Subgroups

Note: x axis not on a linear scale. Abbreviations: AFA, diatinity, C1, credible interval; DAC, dacomitinib; EGFR-TK1, epidermal growth factor receptor – tyrosine kinase inhibitor; ERL, erlotinib; GEF, gefitinib He, hzarard ratio; So, overall survivalCS1, osimertinib.