COMPARISON OF TREATMENT ADHERENCE AND PERSISTENCE WITH EDOXABAN VERSUS APIXABAN, DABIGATRAN, RIVAROXABAN, AND VITAMIN K ANTAGONIST IN NON-VALVULAR ATRIAL FIBRILLATION PATIENTS IN GERMANY: A PROPENSITY MATCHED COHORT STUDY

Wang R¹, Marston XL², Yeh YC², Zimmermann L³, Ye X¹, Gao X²

¹ Daiichi Sankyo Inc., Basking Ridge, NJ; ² Pharmerit International, Bethesda, MD; ³ Gesundheitsforen Leipzig GmbH, Leipzig

BACKGROUND

- Atrial fibrillation (AF) is the most common form of arrythmia. Characterized by an irregular and often rapid heartbeat, AF increases the risk of stroke ¹ and mortality compared with age-matched individuals.²
- Germany has one of the highest prevalence of AF among European countries at 2.3% in 2014, and an incidence of 0.41 per 1,000 person/year.³
- Risk factors of AF include older age, heart disease, high blood pressure, alcohol consumption, and a family history of AF.⁴
- The use of oral anticoagulants was shown to reduce the risk of stroke and therefore is recommended in patients with non-valvular AF (NVAF) by international guidelines.^{5,6}
- Compared to vitamin K antagonists (VKA),⁷ non-vitamin K antagonist oral anticoagulants (NOACs) have fewer food and drug interactions and do not require monitoring of international normalized ratio (INR).⁸⁻¹¹
 The 2016 European Society of Cardiology guidelines recommended the use of NOACs over VKA.⁵
 NOACs available in Germany include dabigatran (approved in November 2011), rivaroxaban (approved in December 2011), apixaban (approved in December 2012) and edoxaban (approved in June 2015).¹²
 Because treatment adherence and persistence to anticoagulant therapy may affect patient outcomes, it is important to understand the utilization patterns of anticoagulants in the real-world setting.

RESULTS

- A total of 1,236 edoxaban patients were matched with patients treated with apixaban, dabigatran, rivaroxaban, and VKA (**Figure 1**).
- Table 1a and 1b show the baseline characteristics of the study cohort before and after matching. After matching, the baseline characteristics were well balanced (standardized difference < 10%) between all comparison groups.

Table 1a. Baseline Characteristics before Propensity Score Matching

	Edoxaban	Apixaban	Dabigatran	Rivaroxaban	VKA
N=	1,236	6,053	1,306	7,013	5,430
Age, mean (SD)	72.3 (10.9)	73.9 (11.8)	71.6 (11.6)	70.9 (12.0)	74.3 (10.2)
Female, %	40%	44%	40%	42%	44%
CHA2DS2-VASc, mean (SD)	3.5 (1.7)	4.0 (1.9)	3.8 (1.9)	3.5 (1.8)	4.0 (1.7)
Modified HAS-BLED, mean (SD)	2.3 (1.0)	2.5 (1.1)	2.4 (1.1)	2.3 (1.1)	2.5 (1.0)

OBJECTIVE

To compare treatment adherence and persistence to edoxaban with other NOACs (including apixaban, dabigatran, rivaroxaban) and VKA in NVAF patients in Germany.

METHODS

Data Source: This is a retrospective study using the German analysis database (Gesundheitsforen Leipzig), a representative sample of the total German statutory health insured population.

Study Cohorts

- Eligible patients included individuals:
 - With a pharmacy claim for edoxaban, apixaban, dabigatran, rivaroxaban, or VKA between 2014 and 2017.
 - With an AF diagnosis
 - At least 1 primary or secondary hospital discharge diagnosis of AF (ICD-9 427.31, ICD-10 I48) before or on the index date, or
 - At least 1 outpatient diagnosis of AF before or on the index date, and at least 1 discrete outpatient diagnosis of AF between 12 months before to 3 months after the index date.¹³

Table 1b. Baseline Characteristics after Propensity Score Matching

	Edoxaban	Apixaban	Edoxaban	Dabigatran	Edoxaban	Rivaroxaban	Edoxaban	VKA
N =	1,232		1,006		1,236		1,231	
Age, mean (SD)	72.3 (10.9)	72.3 (11.6)	71.9 (11.3)	72.1 (11.0)	72.3 (10.9)	72.0 (11.0)	72.4 (10.9)	72.2 (10.6)
Female, %	40%	40%	39%	40%	40%	41%	40%	40%
CHA2DS2-VASc, mean (SD)	3.5 (1.7)	3.5 (1.8)	3.6 (1.8)	3.6 (1.8)	3.5 (1.7)	3.5 (1.8)	3.5 (1.7)	3.6 (1.6)
Modified HAS-BLED, mean (SD)	2.3 (1.0)	2.3 (1.1)	2.3 (1.1)	2.3 (1.1)	2.3 (1.0)	2.3 (1.1)	2.3 (1.0)	2.3 (1.0)

Note: Modified HAS-BLED excludes INR. Abbreviation: VKA, Vitamin K antagonist.

Medication Adherence within 6 Months (Table 2)

• PDC

- After matching, the proportion of patients with PDC ≥ 80% was significantly higher for edoxaban versus apixaban (63.0% versus 52.0%), dabigatran (62.0% versus 41.4%), and VKA (62.9% versus 45.2%) (all *p* < 0.05).
- The proportion of patients with PDC \ge 80% was comparable between edoxaban and rivaroxaban (63.0% versus 66.6%, p = 0.07).
- Multivariable logistic regressions show that edoxaban was associated with increased likelihood of having PDC ≥ 0.8 compared to apixaban (odds ratio [OR], 95% CI: 1.64, 1.39-1.94), dabigatran (OR, 95% CI: 2.40, 1.99-2.88), and VKA (OR, 95% CI: 2.17, 1.84-2.57).

• MPR

- The proportion of patients with MPR ≥ 80% was significantly higher for edoxaban versus apixaban (66.2% versus 55.5%), dabigatran (65.4% versus 45.7%), and VKA (66.1% versus 47.3%) (all p < 0.05).
- The proportion of patients with MPR \ge 80% was lower for edoxaban than rivaroxaban(66.3% versus 71.0%, *p* < 0.05).
- Multivariable logistic regressions show that edoxaban was associated with increased likelihood of having MRP ≥ 0.8 compared to apixaban (OR, 95% CI: 1.63, 1.38-1.93), dabigatran (OR, 95% CI: 2.32, 1.93-2.79), and VKA (OR, 95% CI: 2.29, 1.94-2.72).

Medication Persistence within 6 Months (Table 2)

- \circ ≥ 18 years of age on index date.
- With continuous enrollment in the 12 months before the index date.
- Patients were excluded if they:
 - o received any NOAC within 12 months before the index date,
 - o received VKA within 12 months before their index VKA claims,
 - o received more than 1 NOAC or 1 NOAC plus VKA on the index date, or
 - had valvular AF, deep vein thrombosis, pulmonary embolism, or end-stage renal disease within 12 months before the index date
 - o had joint replacement within 6 months before the index date
 - o pregnancy within 12 months before the index date or before December 31,2017

Outcomes

- Medication adherence was assessed by proportion of days covered (PDC) and medication possession ratio (MPR). Proportion of patients with PDC ≥ 0.8 and proportion of patients with MPR ≥ 0.8 were reported.
 - Six-month PDC
 - Number of days covered by the index therapy in 6 months/180 days
 - Six-month MPR

Number of days supplied of the index therapy in 6 months/180 days

- Medication persistence was assessed by time to discontinuation
 - Discontinuation was defined as a supply gap > 90 days of the index therapy.
 - Proportion of patients continuing the index therapy at 6 months was reported.

Propensity Score Matching

- Goal of matching: to control for potential differences between the study cohorts with respect to baseline characteristics ¹⁴⁻¹⁷
- Comparison groups: edoxaban versus one of the other NOAC or VKA
- Matching methods: 1:1 nearest neighbor matching without replacement

Statistical Analysis

- T-tests were used to evaluate the statistical differences in PDC, MPR, and persistence between patients using edoxaban and other NOAC or VKA.
- Multivariable logistic regression was performed to identify factors associated with adherence (MPR \ge 0.8) and persistence (PDC \ge 0.8).

- Six-month persistence was significantly higher for edoxaban versus dabigatran (75.8% versus 66.3%), rivaroxaban (77.4% versus 73.1%) and VKA (77.4% versus 58.6%) (all p < 0.05).
- Persistence was numerically higher in edoxaban group compared to apixaban (77.4% versus 75.8%, p = 0.37).

Table 2. Medication Adherence and Persistence within 6 Months by Index Anticoagulant (After Propensity Score Matching)

	Edoxaban	Apixaban	Edoxaban	Dabigatran	Edoxaban	Rivaroxaban	Edoxaban	VKA	
N =	1,232		1,006		1,236		1,231		
Adherence									
PDC									
PDC, mean	0.7928	0.7292	0.7854	0.6847	0.7930	0.7843	0.7924	0.7445	
PDC ≥ 80%, n (%)	776 (63.0)	640 (52.0)	624 (62.0)	416 (41.4)	779 (63.0)	823 (66.6)	774 (62.9)	556 (45.2)	
OR (95% CI ^a)	1.64 (1.39-1.94)		2.40 (1.99-2.88)		0.86 (0.73-1.02)		2.17 (1.84-2.57)		
MPR									
MPR, mean	0.8146	0.7521	0.8078	0.7112	0.8150	0.8105	0.8144	0.7561	
MPR ≥ 80%, n (%)	816 (66.2)	684 (55.5)	658 (65.4)	460 (45.7)	819 (66.3)	877 (71.0)	814 (66.1)	582 (47.3)	
OR (95% CI ^a)	1.63 (1.38-1.93)		2.32 (1.93-2.79)		0.81 (0.68-0.97)		2.29 (1.94-2.72)		
Persistence									
Patients continuing the	954 (77.4)	934 (75.8)	763 (75.8)	667 (66.3)	957 (77.4)	904 (73.1)	953 (77.4)	721 (58.6)	
index therapy, n (%)									
Abbreviation: VKA, vitamin K antagonist; PDC, proportion of days covered; MPR, medication possession ratio.									
<i>Note: Bold italic</i> text indicates <i>p</i> < 0.05.									
^a Key variables controlled in the models included age, gender, region, Charlson comorbidities, and concomitant medications.									

CONCLUSIONS

- Edoxaban was associated with significantly higher adherence in NVAF patients compared to apixaban, dabigatran, and VKA. A possible explanation is that edoxaban is dosed once rather than twice daily and does not require routine blood tests.
- Edoxaban patients also had higher persistence compared to dabigatran, rivaroxaban, and VKA.

Figure 1. Flowchart of Patient Selection

Note:

- ^a Patients are required to have: $(1) \ge 1$ primary or secondary hospital discharge diagnosis of AF before or on the index date, or $(2) \ge 1$
- outpatient diagnosis of AF before or on the index date and \geq 1 discrete outpatient diagnosis after the index date.
- ^b Index claim = first NOAC or VKA claim; Index date = date of the first NOAC or VKA claim.
- Abbreviation: NOAC = Non-vitamin K antagonist oral anticoagulant; VKA = Vitamin K antagonist; AF = Atrial fibrillation

 Adherence and persistence should be considered in treatment selection to improve patient care.

REFERENCES

- 1. Wolf PA, Abbott RD, Kannel WB. Atrial fibrillation as an independent risk factor for stroke: the Framingham Study. Stroke. 1991;22(8):983-988.
- Schnabel RB, Yin X, Gona P, et al. 50-year trends in atrial fibrillation prevalence, incidence, risk factors, and mortality in the Framingham Heart Study: a cohort study. Lancet (London, England). 2015;386(9989):154-162.
- 3. Zoni-Berisso M, Lercari F, Carazza T, Domenicucci S. Epidemiology of atrial fibrillation: European perspective. Clinical epidemiology. 2014;6:213-220.
- 4. Kumar K. Overview of atrial fibrillation. UpToDate. 2019.
- 5. Kirchhof P, Benussi S, Kotecha D, et al. 2016 ESC Guidelines for the management of atrial fibrillation developed in collaboration with EACTS. European heart journal. 2016;37(38):2893-2962.
- 6. January CT, Wann LS, Alpert JS, et al. 2014 AHA/ACC/HRS guideline for the management of patients with atrial fibrillation: a report of the American College of Cardiology/American Heart Association Task Force on practice guidelines and the Heart Rhythm Society. Circulation. 2014;130(23):e199-267.
- 7. BMS. Coumadin Prescribing Information. https://packageinserts.bms.com/pi/pi_coumadin.pdf. Published 2019. Accessed April 27, 2020.
- 8. BMS. Eliquis (apixaban) prescribing information. https://packageinserts.bms.com/pi/pi_eliquis.pdf. Published 2019. Accessed April 27, 2020.
- 9. DSI. Savaysa (edoxaban) prescribing information. https://dsi.com/prescribing-information-portlet/getPIContent?productName=Savaysa&inline=true. Published 2019. Accessed April 27, 2020.
- 10. Ingelheim B. Pradaxa (dabigatran etexilate mesylate) prescribing information. https://docs.boehringer-ingelheim.com/Prescribing%20Information/PIs/Pradaxa/Pradaxa.pdf. Published 2019. Accessed April 27, 2020.
- 11. Janssen. Xarelto (rivaroxaban) prescribing information. http://www.janssenlabels.com/package-insert/product-monograph/prescribing-information/XARELTO-pi.pdf. Published 2020. Accessed April 27, 2020.
- 12. Schwill S, Krug K, Peters-Klimm F, et al. Novel oral anticoagulants in primary care in patients with atrial fibrillation: a cross-sectional comparison before and after their introduction. BMC family practice. 2018;19(1):115.
- 13. Chan YH, Lee HF, See LC, et al. Effectiveness and Safety of Four Direct Oral Anticoagulants in Asian Patients With Nonvalvular Atrial Fibrillation. Chest. 2019;156(3):529-543.
- 14. Austin PC. An introduction to propensity score methods for reducing the effects of confounding in observational studies. Multivariate behavioral research. 2011;46(3):399-424.
- 15. Austin PC. Optimal caliper widths for propensity-score matching when estimating differences in means and differences in proportions in observational studies. Pharmaceutical statistics. 2011;10(2):150-161.
- 16. Lanehart RE, de Gil PR, Kim ES, et al. Propensity score analysis and assessment of propensity score approaches using SAS procedures [cited 2014 Jan 2]. Available from: http://support.sas.com/resources/papers/proceedings12/314-2012.pdf.
- 17. Rosenbaum PR, Rubin DB. Constructing a control group using multivariate matched sampling methods that incorporate the propensity score. American Stastician. 1985;39:33-38.

Disclosures: This study was sponsored by Daiichi Sankyo Inc.