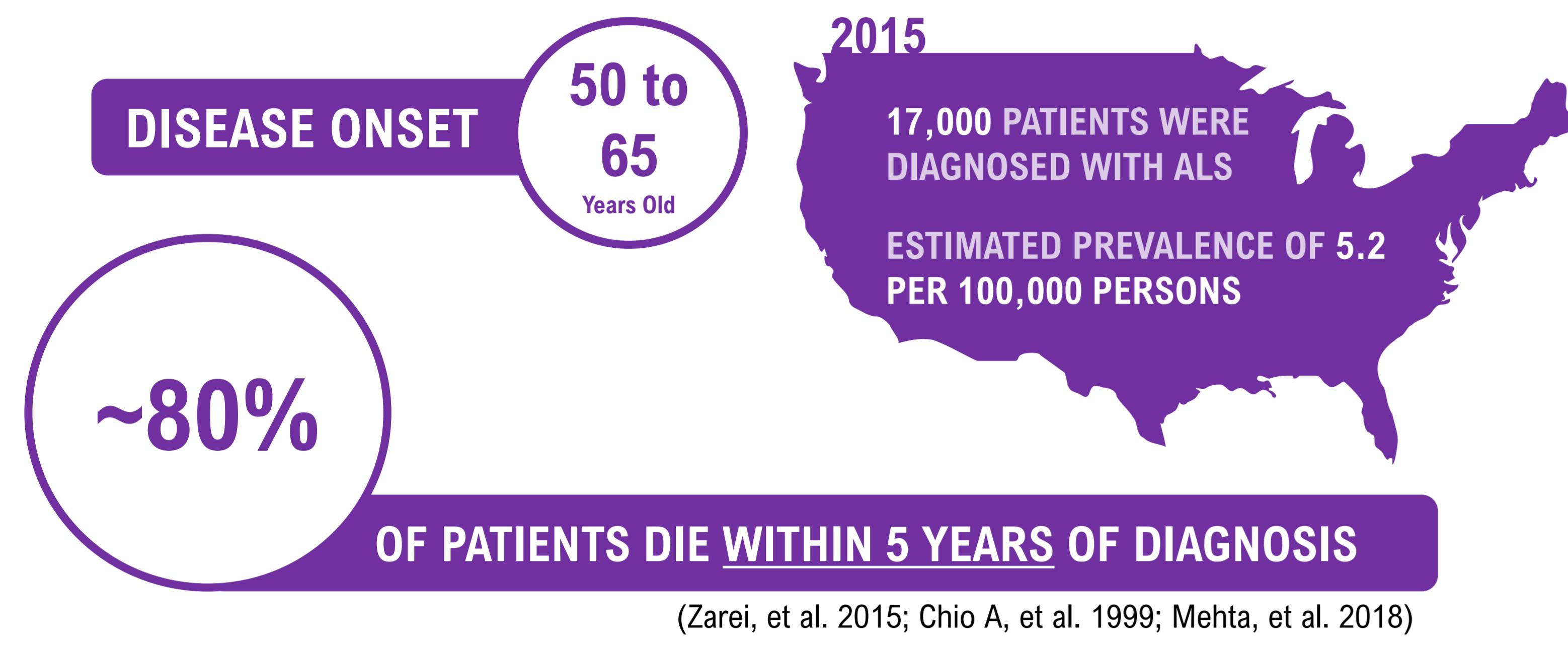


SYMPTOMS, DELAYED DIAGNOSIS, AND QUALITY OF LIFE (QOL) DETERIORATION - EXPLORING THE BURDEN OF AMYOTROPHIC LATERAL SCLEROSIS (ALS)

Forsythe A.*¹, Cooperson Vieweg D.¹, Marshall S.¹, Tomaras D.², Kim, E.¹


1. Purple Squirrel Economics, New York, NY, USA; 2. Purple Squirrel Economics, Montreal, QC, Canada; *Presenting author

PURPLE SQUIRREL
ECONOMICS

BACKGROUND

- Amyotrophic lateral sclerosis (ALS), also known as motor neurone disease (MND) and Lou Gehrig's Disease, is a rare degenerative neuromuscular disorder that causes progressive muscle paralysis (Brown, et al. 2017).
- ALS affects both upper and lower motor neurons, which innervate muscle (Zarei, et al. 2015; Brown, et al. 2017).
- ALS typically presents as a slight focal weakness, progressing to neuron degeneration that eventually affects the respiratory muscles, ultimately leading to death through respiratory paralysis (Brown, et al. 2017).
- Over the course of disease, patients experience a range of debilitating symptoms related to the progressive loss of muscle function and control, including impaired movement, breathing, and swallowing (Zarei, et al. 2015; Brown, et al. 2017).
- ALS can be classified as bulbar onset or limb onset (Zarei, et al. 2015; Kuhnlein, et al. 2008), yet diagnosis and classification of ALS is challenged by a lack of definitive tissue area to biopsy and high degree of diagnostic uncertainty (Al-Chalabi, et al. 2016).
- Given the range of symptoms and severe nature of disease, ALS has a high quality of life (QOL) burden on both patients and caregivers (Olsson, et al. 2011; Qutub, et al. 2014).

(Zarei, et al. 2015; Chio A, et al. 1999; Mehta, et al. 2018)

OBJECTIVE

- We conducted a systematic literature review (SLR) to comprehensively review the relevant evidence on the QOL in ALS patients to further understand the humanistic burden and to encourage future research.

SYSTEMATIC LITERATURE REVIEW

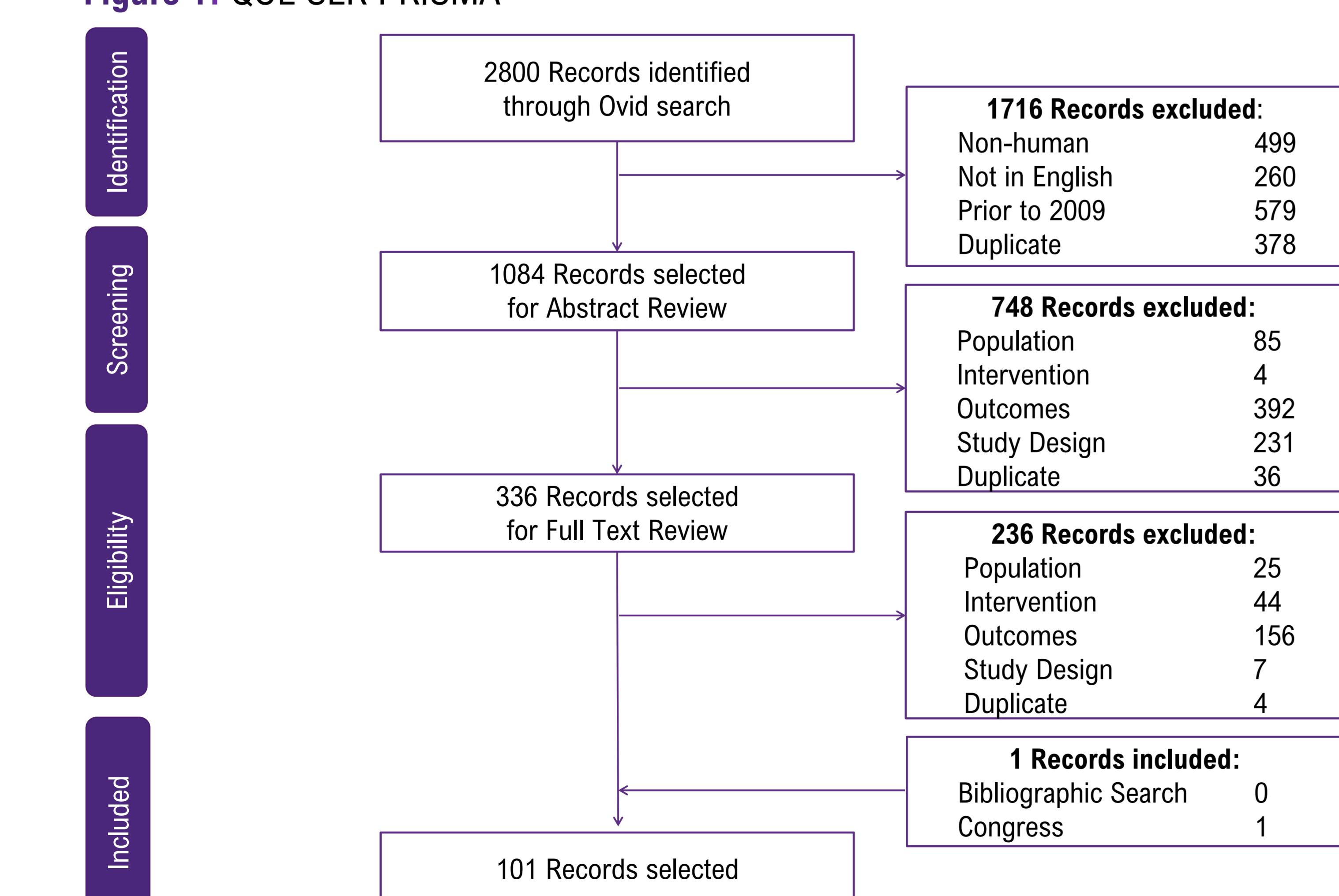

- A QOL SLR following PRISMA guidelines was conducted, with the scope defined in terms of the PICOS criteria (Population, Intervention, Comparators, Outcomes and Study Design).

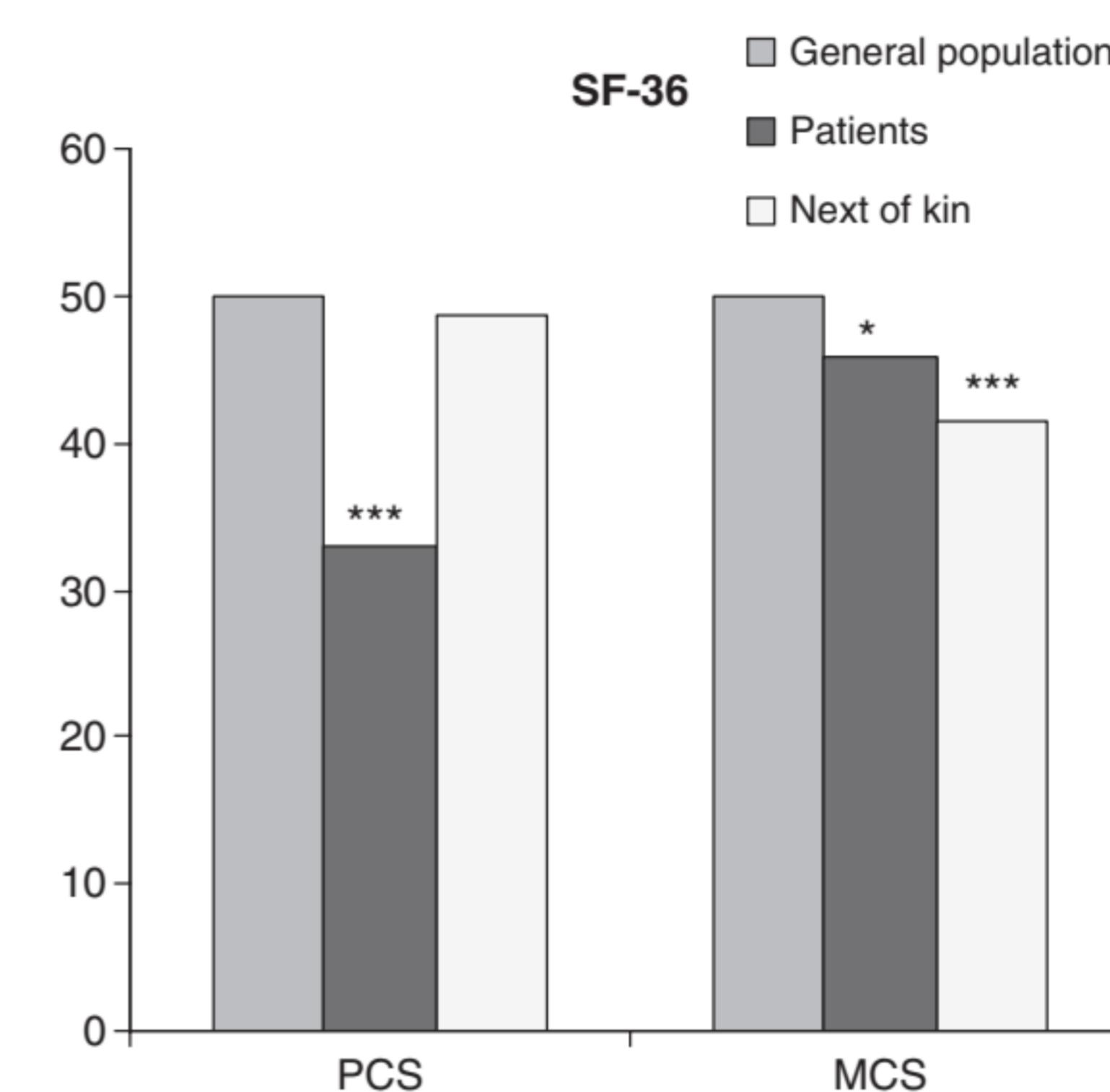
Table 1: PICOS used in the selection process

PICOS		Inclusion
Patient population		The population included adult patients with ALS, also known as MND and Lou Gehrig's disease.
Intervention and Comparators		The interventions or comparators included any systemic treatment, including riluzole and edaravone.
Outcomes measures		Outcome measures assessed were QOL-related outcomes including utilities, disutilities, quality-adjusted life years (QALYs) for health states or adverse events (AEs).
Study design		This SLR considered interventional and non-interventional trials, economic studies with QOL measures. Systematic reviews and meta-analyses were included to cross-check references.
Key Exclusion Criteria		Non-human subjects, <10 patients per arm, assessed radiotherapy, palliative care, or surgery.

- The methodology of both SLRs followed the principles outlined by the Cochrane Collaboration and the UK's National Institute for Health and Care Excellence (NICE) (Higgins & Thomas, 2019; CRD, 2009; NICE, 2012).
- MEDLINE® and Embase® were searched through the Ovid platform from January 2009 to September 2019.
- Publications from the AAN, EAN, and ISPOR conferences were screened manually from 2017 to 2019.
- Publications identified were evaluated to assess whether they should be included for data extraction. The inclusion/exclusion criteria used against the publications were developed using the PICOS format.
- Data from included studies were extracted into an Excel-based data extraction template.

Figure 1: QOL SLR PRISMA

ISPOR US 2020
(Orlando, Florida)


Study by Purple Squirrel Economics
Contacts: info@pshta.com
+1-646-478-8213

QUALITY OF LIFE RESULTS

- The most frequently reported ALS symptoms included fatigue (up to 90%) (Nicholson, et al. 2018), pain (up to 78%) (Hanisch, et al. 2015), and depression (up to 68%) (Prell, et al. 2019) with fatigue as the most prevalent, bothersome, and undertreated (Nicholson, et al. 2018).
- Other symptoms included progressive muscle weakness, loss of voluntary movement, and difficulty breathing, speaking, and swallowing (Oda, et al. 2016 [abstract]; Mohammad, et al. 2013 [abstract]).
- The average delay between symptom onset and diagnosis was 13 months (Chiò A, et al. 2013).
- ALS patients had significantly worse QOL compared to the general population on the SF-36, which was largely driven by decrements in both physical and mental function as shown in Figure 2 (Olsson Ozanne, et al. 2011; Ilse, et al. 2015).
- Over the course of disease, patients experience declining bodily function and QOL (Martinez-Campo, et al. 2017; Shamshiri, et al. 2016).
- The caregiver burden in ALS is high, with approximately half of caregivers suffering from depression and high levels of burden (48% reporting a ZBI score ≥ 17) (Qutub, et al. 2014; Lillo, et al. 2012; Galvin, et al. 2016; Sandstedt, et al. 2018).
- While some treatment options such as edaravone, masitinib, non-invasive ventilation, and percutaneous endoscopic gastrostomy can slow the functional and QOL decline in patients with ALS, they do not provide symptomatic or QOL improvements (Tanaka, et al. 2016 [abstract]; Lou, et al. 2010; Vandoorne, et al. 2016; Mora, et al. 2020).
- Other treatment options, such as recombinant human erythropoietin and thalidomide, offer no benefit for patients; as such, there remain limited effective treatment options for patients (Lauria, et al. 2015; Stommel, et al. 2009).

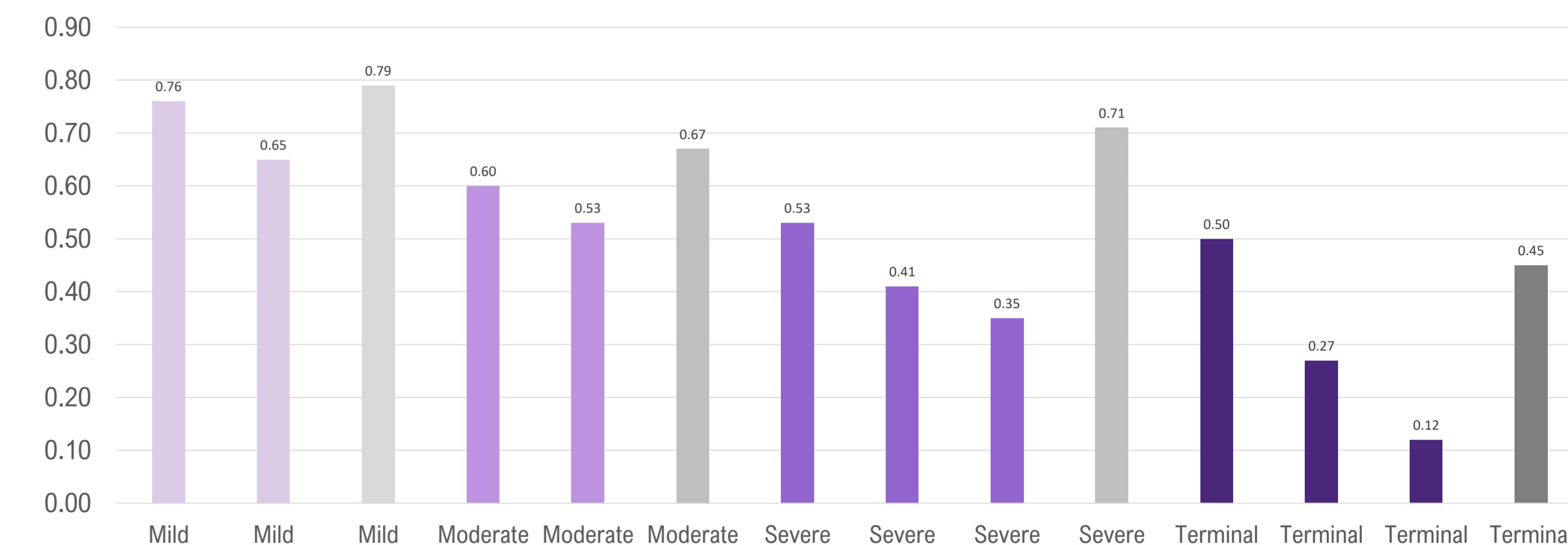

UTILITIES RESULTS

Figure 2: Mean values in the SF-36 in the general Swedish population, ALS patients, and their next of kin (Olsson, et al. 2011)

- Four studies were identified in the SLR that reported utility data stratified by disease severity using the King's staging criteria (mild, moderate, severe, and terminal) (Moore, et al. 2019; Jones, et al. 2014; Lopez-Bastida, et al. 2009; Tavakoli, et al. 2001).
- Utilities were captured with the EQ-5D and standard gamble methods and were separated into the four ALS health states.
- Utility values ranged from 0.79 to 0.65, 0.67 to 0.53, 0.71 to 0.35, and 0.50 to 0.12, across the four health states respectively, demonstrating a severe decline in health-related QOL with increasing disease severity (Figure 3).

Figure 3: Health utility values in ALS by disease severity across the four studies (Moore, et al. 2019; Jones, et al. 2014; Lopez-Bastida, et al. 2009; Tavakoli, et al. 2001)

LIMITATIONS

- One limitation included the heterogeneity of study designs across studies as they were conducted in different countries and settings, which made cross-study comparisons challenging.
- There may be a degree of heterogeneity across the ALS patient populations of different studies, such as age and proportion of females among other baseline characteristics, which could limit cross-study comparison without further adjustment.
- Another limitation is that QOL studies were not assessed for the quality of their design via validated measures.

CONCLUSIONS

- Patients with ALS experience poor QOL and loss of function that deteriorates with disease progression to higher levels of severity.
- The burden of symptoms is high; patients experience various debilitating symptoms, with fatigue, depression, and pain being the most common.
- Caregiver burden is also high, and caregivers experience depression and decrements in QOL.
- Current therapies only slow the decline in QOL and loss of function.
- Published evidence demonstrates a need for novel treatment strategies to alleviate the heavy humanistic burden in ALS.

REFERENCES

- Al-Chalabi A, et al. The Lancet Neurology. 2016 Oct 15(11):1182-94.
- Brown RH, Al-Chalabi A, Longo DL, editor. N Engl J Med. 2017 Jul 13;377(2):162-72.
- Chio A, et al. Percutaneous Endoscopic Gastrostomy Study Group. Neurology. 1999 Sep 22;53(6):1123-5.
- Chio A, et al. Neuroepidemiology. 2013;41(2):118-30.
- CRD. Systematic reviews: CRD's guidance for undertaking reviews in health care [Internet]. University of York; 2009. Available from: https://www.york.ac.uk/arc4/rd/Systematic_Reviews.pdf
- Galvin M, et al. BMC Palliat Care. 2016 Dec;16(1):81.
- Hanisch F, et al. Brain Behav. 2015 Mar;5(3):n/a-n/a.
- Higgins JPT, Thomas J. Cochrane Handbook for Systematic Reviews of Interventions; Version 6 [Internet]. The Cochrane Collaboration; 2019. Available from: <https://training.cochrane.org/handbook/current>
- Ilse B, et al. Soc Indic Res. 2015 Feb;120(3):871-82.
- Jones AR, et al. Amyotrophic Lateral Sclerosis and Frontotemporal Degeneration. 2014;15(3-4):285-91.
- Kuhnlein P, et al. Nat Clin Pract Neurol. 2008 Jul;4(7):366-74.
- Lauria G, et al. J Neurol Neurosurg Psychiatry. 2015 Aug;86(8):879-86.
- Lillo P, Moshi E, Hodges JR. BMC Neurol. 2012 Dec;12(1):156.
- López-Bastida J, et al. Amyotroph Lateral Scler. 2009 Aug;10(4):237-43.
- Lou J-S, et al. Amyotrophic Lateral Sclerosis. 2010 Jan;11(2):116-21.
- Martinez-Campo Y, et al. BMC Palliat Care. 2017 Dec;16(1):75.
- Mehta R, et al. MMWR Morb Mortal Wkly Rep. 2018 Nov 23;67(46):1285-9.
- Mohamed M, Young C. Amyotrophic Lateral Sclerosis and Frontotemporal Degeneration. 2013;14(Suppl 2):73-4.
- Moor J-S, et al. Amyotrophic Lateral Sclerosis. 2014 Jun;15(3-4):292-7.
- Moon A, Young C, Hughes DA. Value in Health. 2019 Nov;22(11):1257-65.
- Mora JS, et al. Amyotrophic Lateral Sclerosis and Frontotemporal Degeneration. 2019;21(1-2):5-14.
- NICE. National Institute for Health and Care Excellence, Decision Support Unit. [Internet]. 2012. Available from: <http://niceids.org.uk/>
- Nicholson K, et al. Muscle Nerve. 2018 Jan;57(1):20-4.
- Oda A, Alves P, Oliveira A. Amyotrophic Lateral Sclerosis and Frontotemporal Degeneration. 2016;17(Suppl. 1):pp 316.
- Olsson Ozanne AG, Strang S, Persson LI. J Clin Nurs. 2011 Jan;20(1-2):283-91.
- Prell T, et al. J Neurol Sci. 2019 Feb 15;397:92-5.
- Qutub K, et al. Amyotrophic Lateral Sclerosis and Frontotemporal Degener. 2014 Jun;15(3-4):292-7.
- Sandstedt P, et al. J Clin Nurs. 2018 Dec;27(23-24):4321-30.
- Shamsdin H, et al. Journal of the Neurological Sciences. 2016 Sep;368:35-40.
- Vandoorne E, et al. Amyotrophic Lateral Sclerosis. 2009 Jan;10(5-6):393-404.
- Tanaka M, et al. Amyotrophic Lateral Sclerosis and Frontotemporal Degeneration. 2013;14(3-4):292-7.
- Tavakoli M, Malek M. J Neurol Sci. 2001 Oct;151(1-2):95-102.
- Vandoorne E, et al. Acta Clin Belg. 2016 Dec;71(6):389-94.
- Zarei S, et al. Surg Neurol Int. 2015;6:171.