

COST-EFFECTIVENESS OF EXTRACORPOREAL PHOTOPHERESIS FOR THE TREATMENT OF ERYTHRODERMIC (STAGE T₄, M₀) CUTANEOUS T-CELL LYMPHOMA PATIENTS IN THE AUSTRALIAN SETTING

Dehle F¹, Gennari F², Peacock A¹, Taylor C¹, Mesa Zapata OA² ¹Health Technology Analysts, Sydney, NSW, Australia, ²Mallinckrodt Pharmaceuticals, Bedminster, NJ, USA

BACKGROUND AND OBJECTIVE

- Cutaneous T-cell lymphoma (CTCL) is a rare and incurable form of non-Hodgkin's lymphoma that causes debilitating pruritus, skin lesions and plaques that significantly impact quality of life. It is estimated there are less than 1,200 CTCL patients in Australia.[1]
- The objective of this study was to assess the costeffectiveness of extracorporeal photopheresis (ECP) compared with standard of care (SoC) therapy for the treatment of entthredermin (stage)

METHODS

Utilities

- A systematic review of the literature did not identify any relevant publications of utility values associated with CTCL.
- A clinician survey identified psoriasis as the most applicable disease to use as a proxy for QOL as patients with psoriasis suffer from pruritis, have physical disfigurement and erythroderma; all of which are symptoms suffered by CTCL patients.[7]

therapy for the treatment of erythrodermic (stage T_4 , M_0) CTCL patients, who are refractory to one or more systemic treatments from the perspective of the Australian health care system.

METHODS

Population

Patients with erythrodermic Stage T₄, M₀ CTCL aged 18 years and older who are refractory to one or more systemic treatments.

Intervention and comparators

- A survey and assessment of published literature was conducted to determine the placement of ECP and the comparator therapies.
- Comparator was Standard of Care second-line therapies including methotrexate (MTX), interferon-alpha (IFN-α), vorinostat, and brentuximab vedotin (BV).

Model Structure

- Cost-effectiveness of ECP compared with other SoC therapies available in Australia (e.g. MTX, IFN-α vorinostat and BV).
- Patients with CTCL often cycle through multiple second-line therapies as well as chemotherapy.[2] Therefore, patients were modelled to cycle through different 2nd line therapies before chemotherapy or no treatment.
- The model assumes that following discontinuation of initial treatment, patients follow a fixed sequence of treatments determined by cost of treatment (i.e. cheapest to most expensive) (Figure 1).
- Patients received chemotherapy once all other treatment options were exhausted, after which it is assumed patients no longer received active therapy.
- Treatment sequence and model structure was validated using a Markov trace of the ECP arm (Figure 2).
- Monthly treatment regimens for therapy were calculated using relevant treatment guidelines and product information sheets.[3,4]

Figure 2. Markov trace of the ECP arm

- One psoriasis QOL study [12] was the most appropriate as it had been applied in previous health technology assessments in Australia and the UK.[13]
- Psoriasis severity was mapped to CTCL treatment response; mild, moderate and severe psoriasis mapped to complete, partial and no response, respectively.
- Weighted utility values for each treatment were calculated based on responder rates reported in the clinical evidence.[5, 7, 12, 14-17] It was assumed that no response was achieved with chemotherapy.
- All comparator therapies are associated with Grade 3 and 4 AEs, and therefore disutilities were applied and calculated based on frequency and severity using clinical evidence and existing publications.[5, 8-11]
- Given that no Grade 3 or 4 AEs were attributed to ECP treatment in the Gao study, there was no disutility applied to the ECP arm.[2]
- No disutility was applied to the chemotherapy arm under the assumption of no response to treatment.

Sensitivity analysis

- Deterministic sensitivity analysis was conducted to assess the impact of various assumptions and other plausible scenarios on the projected outcome. The following assumptions and scenarios were tested: – Discounting at 0% and 3%
- Australian approved ECP treatment regimen
- Disutilities were removed
- Vorinostat TTNT was applied to the BV arm.
- The price of BV examined given its confidential effective price under the PBS.

RESULTS

Including ECP as a second-line treatment option for CTCL dominated over other treatment strategies in terms of cost-effectiveness (Figure 4).

- Patients were assigned costs (in A\$) and qualityadjusted life years (QALYs) associated with each treatment at monthly cycle intervals over a 5-year time horizon.
- Results were presented comparing ECP vs a weighted SoC comparator. Weighting of each comparator arm was calculated based on treatment survey and Services Australia prescribing data.

Transition Probabilities

- Time to next treatment (TTNT) used to calculate time in each health state for each therapy, was sourced from an Australian observational study of ECP and comparator treatments (Figure 3).[2]
- The study had the highest external validity as the model is from the perspective of the Australian public payer.
- Patients received ECP therapy at a median 2nd line of treatment.[2]
- TTNT provides a functional and clinically relevant measure of therapy effectiveness, as it implies durability of response and control of debilitating symptoms.
- In the absence of progression free survival data, TTNT data presented in Gao 2019 and associated unpublished data collected from the Victorian Comprehensive Cancer Centre (VCCC; Melbourne, VIC, AUS) was used to construct Kaplan-Meier (KM) curves.[2]
- The IFN-α TTNT KM curve was used as a proxy to calculate the probability of discontinuing BV given that a BV KM curve source was unavailable and the mean time on treatment in the BV clinical trial [5] was similar to the median TTNT for IFN-α (8.9 months versus 8 months, respectively).[2]
- Baseline mortality was based on the overall survival (OS) analysis for ECP presented in Gao 2019 and the VCCC report.[2]
- Conservatively, no survival benefit was assigned to the ECP arm and mortality reported for ECP applied to all treatment arms. Median OS was 80 months.

Costs

- Only treatment costs were considered in this economic analysis.
- The cost of ECP included the cost of the ECP procedure plus the cost of extracorporeal methoxsalen, UVADEX® (Mallinckrodt

BV, brentuximab vedotin; ECP, extracorporeal photopheresis; IFN, interferon; MTX, methotrexate

Figure 3. Inputs used in the economic analysis

Verieble description	Valua	Course						
variable description		Source						
Methotrexate	2.5							
ΙΕΝ-α	8	[2] ^b						
Vorinostat	(.5							
BV	8 ^a							
Chemotherapy	3							
Cost per month (AU\$)								
ECP	Month 1 to 5: \$4,448.50	PBS: expert opinion						
	Month 6+: \$1,611.92							
Methotrexate	\$13.67	PBS; [4]						
IFN-α	\$1,383.19	PBS; TGA PI						
Vorinostat	\$4,519.20	PBS; TGA PI						
Brentuximab	\$21,779.57	PBS; [3]						
Chemotherapy	\$698.57	Assumption						
No treatment	\$0	PBS; expert opinion						
	Utility							
ECP	0.73	[7, 12]						
Methotrexate	0.62	[5, 12]						
IFN-α	0.70	[12, 14, 15]						
Vorinostat	0.65	[12, 16]						
BV	0.68	[12, 17]						
Chemotherapy	0.59	[12]						
No treatment	0.59	[12]						
	Disutility							
ECP	NA							
Methotrexate	-0.040	[9]						
IFN-α	-0.095	[9]						
Vorinostat	-0.018	[8. 10]						
BV	-0.058	[5, 11]						
Chemotherapy	NA							
No treatment	NA							
	Other							
Time horizon	5 years							
Discounting	5%	MSAC						

BV, brentuximab vedotin; ECP, extracorporeal photopheresis; IFN, interferon; MSAC, Medical Services Advisory Committee; NA, not applicable; PBS, Pharmaceutical Benefits Scheme; TGA, Therapeutic Goods Administration; TTNT, time to next treatment ^a assumed same as IFN; ^b including unpublished data from the Gao 2019 study

- ECP displaced expensive pharmaceutical therapies (i.e. a greater proportion of patients avoided subsequent treatment with the high-cost treatment options vorinostat and brentuximab vedotin).
- ECP was associated with an incremental qualityadjusted life year (QALY) gain of between 0.20 and 0.21, due to the lack of Grade 3 or 4 AEs and because patients remained on therapy for longer with a higher quality of life than comparator treatments.
- ECP is the dominant treatment option in all sensitivity analysis scenarios (Figure 5).
- Discounting monthly cost of BV by 50% had the greatest impact on the ICER, however, ECP remained dominant over the weighted comparator.

CONCLUSION

- This analysis demonstrates that ECP is a costeffective option for the treatment of erythrodermic CTCL patients, who are refractory to one or more systemic treatments, in Australia, compared with other SoC therapies.
 ECP displaced expensive pharmaceutical
- therapies and delayed advancing to high-cost treatment alternatives vorinostat and brentuximab vedotin, which lead to ECP being both less costly and more effective.

REFERENCES

1. Hughes, C.F., et al., Mycosis fungoides and Sezary syndrome: Current challenges in assessment, management and prognostic markers. Australas J Dermatol, 2015.

2.Gao, C., et al., Prolonged survival with the early use of a novel extracorporeal photopheresis regimen in patients with Sézary Syndrome.

of

ds

bra

e

oth

and

logo

euticals

Pha

odt

Mallinck

the

mark,

brand

"W"

ickrodt, the

Mal

- Pharmaceuticals plc, Bedminster, NJ, USA).
- The ECP treatment protocol applied in the model is based on international guidelines [6]:Two consecutive days of treatment per month for six months, then one treatment every six weeks thereafter.
- The ECP regimen used in Australia differs slightly from international guidelines primarily due to complex funding arrangements in individual hospitals and lack of resources.[7]
- The Australian regimen has been shown to produce similar outcomes as the international protocol [7] and the average cost per month is similar.
- Drug costs were sourced from the PBS, and cost per cycle calculated using the respective treatment regimens as indicated in product information sheets and international guidelines.
- Other costs such as treatment-related adverse event (AE) costs were conservatively not included in the model, given the number of Grade 3 or 4 AEs associated with comparator therapies.[5, 8-11]

Figure 4. Results of the economic analysis

Tx arm	Costs	Incr. cost	QALYs	Incr. QALYs	ICER
ECP	\$145,514	NA	2.33	NA	NA
Weighted comparator	\$183,106	-\$37,591.99	2.13	0.20	Dominant

ECP, extracorporeal photopheresis; ICER, incremental cost-effectiveness ratio; Incr, incremental; NA, not applicable; QALY, quality adjusted life years

Figure 5. Results of deterministic sensitivity analyses

Description	Incr. cost	Incr. QALY	ICER	Impact			
Base case	-\$37,592	0.20	Dominant	NA			
Discount rate 0%	-\$38,512	0.22	Dominant	Low - Favours ECP			
Discount rate 3.5%	-\$37,893	0.21	Dominant	Low - Favours ECP			
Gao 2019 ECP treatment regimen	-\$31,642	0.20	Dominant	Low - Favours comparator			
No disutility associated with treatment	-\$37,592	0.17	Dominant	Low - Favours comparator			
Use vorinostat TTNT for BV	-\$27,507	0.21	Dominant	Low - Favours comparator			
Monthly cost of BV discounted by 50%	-\$3,645	0.20	Dominant	Moderate - Favours comparator			
BV, brentuximab vedotin; CTCL, cutaneous T-cell lymphoma; ECP, extracorporeal photopheresis; ICER, incremental cost-effectiveness ratio; Incr. incremental; TTNT, time to next treatment, QALY, quality adjusted life years							

Blood, 2019.

- 3.London Cancer Alliance, Gemcitabine in Cutaneous T-cell Lymphoma 2017, Skin Pathway Group.
- Schiller, M., et al., Dose-escalation study evaluating pegylated interferon alpha-2a in patients with cutaneous T-cell lymphoma. Journal of the European Academy of Dermatology and Venereology, 2017. 31(11): p. 1841-1847.
- Prince, H.M., et al., Brentuximab vedotin or physician's choice in CD30positive cutaneous T-cell lymphoma (ALCANZA): an international, openlabel, randomised, phase 3, multicentre trial. The Lancet, 2017. 390(10094): p. 555-566.
- 6. Alfred A, The role of extracorporeal photopheresis in the management of cutaneous T-cell lymphoma, graft-versus-host disease and organ
- transplant rejection: a consensus statement update from the UK Photopheresis Society. British journal of haematology, 2017(pagination).
- Arulogun, S., et al., Extracorporeal photopheresis for the treatment of Sezary syndrome using a novel treatment protocol. J Am Acad Dermatol, 2008. 59(4): p. 589-95.
- 8. de Jong, L.A., et al., Cost-effectiveness Analysis for Apixaban in the Acute Treatment and Prevention of Venous Thromboembolism in the Netherlands. Clin Ther, 2017. 39(2): p. 288-302.e4.
- 9. Kilbridge, K.L., et al., Patient preferences for adjuvant interferon alfa-2b treatment. J Clin Oncol, 2001. 19(3): p. 812-23.
- 10.Large, S., et al., Cost-effectiveness of pembrolizumab versus brentuximab vedotin for patients with relapsed or refractory classical Hodgkin's lymphoma: a United States payer perspective. J Med Econ, 2018: p. 1-10.
- Swinburn, P., et al., Health utilities in relation to treatment response and adverse events in relapsed/refractory Hodgkin lymphoma and systemic anaplastic large cell lymphoma. Leuk Lymphoma, 2015. 56(6): p. 1839-45.
- 12.Zug, K.A., et al., Assessing the preferences of patients with psoriasis. A quantitative, utility approach. Arch Dermatol, 1995. 131(5): p. 561-8.
- 13. Woolacott, N., Hawkins, N., Mason, A., Kainth, A., Khadjesari, Z., Bravo Vergel, Y., Misso, K., Light., Chalmers, R., Sculpher, M., Riemsma, R.,, Etanercept and efalizumab for the treatment of psoriasis: a systematic review, Health Technology Assessment, Editor. 2006: NHS.
- 14. Geskin, L. and D.C. Malone, An exploratory cost-effectiveness analysis of systemic treatments for cutaneous T-cell lymphoma. J Dermatolog Treat, 2018. 29(5): p. 522-530.
- 15.Whittaker, S., R. Hoppe, and H.M. Prince, How I treat mycosis fungoides and Sezary syndrome. Blood, 2016. 127(25): p. 3142-53.
- 16. Olsen, E.A., et al., Phase IIB multicenter trial of vorinostat in patients with persistent, progressive, or treatment refractory cutaneous t-cell
- lymphoma. Journal of Clinical Oncology, 2007. 25(21): p. 3109-3115.
- Kim, Y.H., et al., Phase II Investigator-Initiated Study of Brentuximab Vedotin in Mycosis Fungoides and Sezary Syndrome With Variable CD30 Expression Level: A Multi-Institution Collaborative Project. J Clin Oncol, 2015. 33(32): p. 3750-8.

