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Objectives: Ability to distinguish between subtypes of lung cancer (LC) 1s important for clinical outcomes and
cost analysis, but this information 1s seldom captured 1n the structured electronic health record (EHR) data. The
objective of this study 1s to develop and validate an artificial intelligence model to 1dentify non-small cell lung

cancer (NSCLC) patients from a cohort of heterogeneous LC patients using de-identified retrospective EHR
data.

Methods:

56,748 LC patients were selected
from the ASCO CancerLinQ (CLQ)
dataset, of which 85% were labelled

to be NSCLC
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Fig 2: Depiction of a patients journey as captured in
the EHR and the features used to build the model

Fig 1: Flowchart explaining the methodology used for modeling, testing and
validation

Results: On the test set, the model had an AUC-ROC of 0.93 and overall accuracy of 93%. For 1dentifying
NSCLC patients, the precision was 0.93 with recall 0.99 The PPV of the model was 0.93 and NPV was 0.91
(Fig 3). This model compares favorably against a previously developed medications and tests-based NSCLC
case finding algorithm using claims data which had an AUC of 0.88 [2]. Features that strongly predicted
NSCLC status included genetic testing, surgery, administration of targeted therapies, immunotherapies and
chemotherapies including pemetrexed, gemcitabine, taxanes, platins and vinorelbine etc. whereas
administration of drugs such as etoposide, topotecan and irinotecan we strong predictors of non-NSCLC status
(Fig 4).
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Fig 3: Results of model performance on test set stezolizumab_after_2016
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Fig 4: SHAP plot depicting top 50 features of the model

Conclusions: We have developed a model which can identify NSCLC patients from a heterogeneous
population of LC patients with a high precision and recall. This could save substantial time and effort by
quickly 1dentifying patients for retrospective outcomes and cost studies as compared to expert manual curation.
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