Ramos M, Martins L, Lamotte M
Th(is)²Modeling, Asse, Belgium

ISPOR Congress, November 18-20 2024, Barcelona, Spain.

Background

- Several generic disease models have been developed in cardiovascular disease (CVD), diabetes, obesity and kidney disease.
- These diseases have common comorbidities; thus, most of these models describe all of them to some extent, with some limitations.
- To the best of our knowledge, Metabo-Reno-Cardiovascular Disease Model (MRCDM) is the first model that fully integrates the impact of changes in a considerable amount of risk factors on the different diseases. Key drivers being the glycemic status and body weight.

Objectives

• This study aims to validate the prediction of mortality in individuals with type 2 diabetes using the MRCDM.

Methods

- The MRCDM is a microsimulation model, with specific disease submodules and complications represented within a structure of Markov Health states.
- Individuals that enter the model can be with or without diabetes (type 1 or 2), obesity, CVD and chronic kidney disease.
- To predict mortality in Western countries, 2 approaches can be used: UKPDS82 mortality equations¹, or disease specific mortality (case and long-term fatality) combined with non-specific general mortality (UK).
- The model was populated with UKPDS specific baseline characteristics¹ and assuming no history of CVD.
- The UKPDS90 progression of risk factors equations were used².
- UKPDS82¹, Framingham³⁻⁵ and the Swedish National Diabetes Registry (SweNDR)⁶ CVD risk equations were applied.
- With the different approaches, Life-expectancy (LE) predictions were compared to the UKPDS study outcomes.

Table 1 – MRCDM Cohort inputs

Baseline characteristics	Value Value
HbA1c (%)	7.08
Start age (years)	53.3
Duration of diabetes (years)	0
Proportion male	61%
SBP (mmHg)	135
DBP (mmHg)	82
Total cholesterol (mg/dL)	209
HDL (mg/dL)	41
LDL (mg/dL)	135
Triglycerides (mg/dL)	208
BMI (kg/m²)	27.5
eGFR (mL/min/1.73m²)	82

HbA1c: hemoglobin A1c, SBP: Systolic blood pressure, DBP: Diastolic blood pressure, HDL: High-density lipoprotein cholesterol, LDL: Low-density lipoprotein cholesterol, BMI: Body mass index, eGFR: Estimated glomerular filtration rate

Table 2 – MRCDM predicted life expectancy

Equation / study		Predicted LE (in years)
UKPDS observed outcome	23.0	
CVD equation	Mortality approach	
UKPDS 82	UKPDS 82	22.3
UKPDS 82	Case fatality	23.5
Framingham	UKPDS 82	23.0
Framingham	Case fatality	23.6
SweNDR	UKPDS 82	21.5
SweNDR	Case fatality	22.9

Results

- In Table 2, the UKPDS 82 observed life expectancy and the predictions obtained with three sets of MRCDM risk equations covering different regions are shown.
- Using the combination of short and long-term case fatality and non-specific mortality, results in slightly higher life expectancy compared to the UKPDS combined mortality approach.
 Nevertheless, the MRCDM predictions are similar to the observed data.
- In Figure 1, the UKPDS 82 observed survival and the MRCDM predicted survival are shown.
- Compared to the UKPDS 82 observed data, the MRCDM predicts lower annual mortality at younger ages and higher annual mortality at more advanced ages.
- This is the case, for both UKPDS 82 combined mortality approach and for the case fatality approach, independent of the CVD risk equations used.

Figure 1 – MRCDM predicted long-term survival

Conclusions

- Independent of the mortality approach and the CVD risk equations selected, the MRCDM provides similar LE predictions to what is observed in the UKPDS 82 study.
- When comparing annual mortalities, the evolution over time is slightly different.

Want to know more about the MRCDM?
Contact: team@this2modeling.com

References

- 1. Hayes AJ, Leal J, Gray AM, Holman RR, Clarke PM. UKPDS outcomes model 2: a new version of a model to simulate lifetime health outcomes of patients with type 2 diabetes mellitus using data from the 30 year United Kingdom Prospective Diabetes Study: UKPDS 82. Diabetologia. 2013;56(9):1925-1933. doi:10.1007/s00125-013-2940-y
- 2. Leal J, Alva M, Gregory V, et al. Estimating risk factor progression equations for the UKPDS Outcomes Model 2 (UKPDS 90). Diabet Med J Br Diabet Assoc. 2021;38(10):e14656. doi:10.1111/dme.14656
- D'Agostino RB, Russell MW, Huse DM, et al. Primary and subsequent coronary risk appraisal: New results from the Framingham study. Am Heart J. 2000;139(2, Part 1):272-281. doi:10.1016/S0002-8703(00)90236-9
- Wolf PA, D'Agostino RB, Belanger AJ, Kannel WB. Probability of stroke: a risk profile from the Framingham Study. Stroke. 1991;22(3):312-318. doi:10.1161/01.str.22.3.312

 Kannel WB, D'Agostino RB, Silbershatz H, Belanger AJ, Wilson PW, Levy D. Profile for estimating risk of heart failure. Arch Intern Med. 1999;159(11):1197-1204. doi:10.1001/archinte.159.11.1197
- 6. Kannel WB, D'Agostino RB, Silbershatz H, Belanger AJ, Wilson PW, Levy D. Profile for estimating risk of heart failure. Arch Intern Med. 1999;159(11):1197-1204. doi:10.1001/archinte.159.11.1197
 6. Cederholm J, Eeg-Olofsson K, Eliasson B, et al. Risk Prediction of Cardiovascular Disease in Type 2 Diabetes: A risk equation from the Swedish National Diabetes Register. Diabetes Care. 2008;31(10):2038-2043. doi:10.2337/dc08-0662