The Economic Burden of Lung Cancer in Greece: A Systematic Review of the Literature.

<u>Gourzoulidis G<sup>1</sup> Kastanioti C<sup>1</sup>, Mavridoglou G<sup>1</sup>, Kotsilieris T<sup>1</sup> Tzanetakos C<sup>2</sup></u>

<sup>1</sup>Department of Business and Organizations Administration, University of the Peloponnese, Kalamata, Greece <sup>2</sup>Health Through Evidence GP, Athens, Greece.

#### Background

Lung cancer is the most commonly diagnosed cancer site and the leading cause of cancer death globally[1].

In Greece, lung was estimated to be the 3rd most commonly diagnosed cancer site and lung cancer the leading cause of cancer death, with 8,960 new cases and 7,662 deaths annually (2020 estimates)[1].

There are two major types of lung cancer, non-small cell lung cancer (NSCLC) and small cell lung cancer (SCLC), while NSCLC accounts for 80-90% of lung cancers [2]

The economic burden of lung cancer accounts for a large proportion of all healthcare expenditure across many European countries[3]

•High direct costs associated with management of advanced NSCLC patients are mainly driven by hospitalization needed for drug administration and treatment of adverse events (AEs)[4-5], and these costs increase with disease progression compared to stable disease [6].



•In Greece, real-world evidence data on lung cancer is limited, with only a few studies available. Therefore, conducting a comprehensive and structured analysis of existing research is crucial to provide a clear understanding of the financial impact lung cancer has on the Greek healthcare system and society.

#### Objective

The objective of the current study was to conduct a systematic literature review and investigate the economic burden of lung cancer in Greece. Additionally, the study aimed to identify existing data gaps and provide insights to support the design of future real-world studies.

### Methods

- This systematic review was conducted in accordance with the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines [7].
- A systematic search on studies published in English on cost of lung cancer in Greece was performed in electronic databases such as PubMed, Scopus and ScienceDirect.
- After conducting a literature search, identified studies were reviewed to remove duplicates. The remaining studies were then independently screened by two reviewers based on predetermined inclusion criteria using the PICOS framework (Population, Interventions, Comparators, Outcomes, and Study Design). The PICOS criteria used in the search strategy are detailed in Table 1. A standardized data extraction form, developed for the purpose of this review, was used by the same two reviewers to independently extract data. A third reviewer, where necessary, was involved to resolve potential discrepancies on extracted data between the two reviewers.



## Results

- The study by Leftakis and Geitona [10] analyzed hospitalization costs for lung cancer patients undergoing thoracic surgery in the ICU of Sotiria Hospital in Athens (September 1997 - February 1998). The total cost per patient was estimated at US\$6,958, with ICU expenses making up 29% (US\$2,011).
- The study by Gkogkozotou et al. [13] evaluated staging costs for NSCLC using PET/CT and brain MRI (December 2014 November 2016) in 30 patients. Average diagnostic test costs were €1,823.70 for those receiving chemotherapy alone, while surgical treatment after neoadjuvant chemotherapy cost up to €9,068.20.
  Table 2: Characteristics of included studies

| Study                         | Study Design and                                                                  | Population and                                                    | Disease stage                                      | <b>Study Duration</b>    | Treatment Status at                                                           | Costing   | Perspective of                             | Funding                                                                             |
|-------------------------------|-----------------------------------------------------------------------------------|-------------------------------------------------------------------|----------------------------------------------------|--------------------------|-------------------------------------------------------------------------------|-----------|--------------------------------------------|-------------------------------------------------------------------------------------|
|                               | data source                                                                       | sample size                                                       |                                                    |                          | study inception                                                               | method    | analysis                                   |                                                                                     |
| Leftakis et al.<br>(2001)     | Prospective study;<br>hospital ICU patient<br>records,(Athens)                    | 95, patients with<br>lung cancer treated<br>in the ICU            | All stages<br>undergoing<br>surgery                | 1997–1998<br>(6 months)  | Postoperative patients after thoracic surgery                                 | Bottom-up | Public payer<br>perspective (Greek<br>NHS) | Not reported                                                                        |
| Zarogoulidou et<br>al. (2015) | Prospective hospital-<br>based (Thessaloniki)                                     | 113, patients<br>diagnosed with<br>NSCLC or SCLC                  | Local and<br>extended disease<br>(NSCLC/SCLC       | 2011–2014 (32<br>months) | Newly diagnosed patients<br>undergoing<br>chemotherapy                        | Bottom-up | Public payer and societal perspective      | None                                                                                |
| Gkogkozotou et<br>al. (2018)  | Retrospective cohort<br>study; hospital<br>patient<br>records,(Athens)            | 30, patients<br>diagnosed with<br>NSCLC                           | Early and<br>advanced stages<br>(I-IV)             | 2014–2016<br>(2 years)   | Patients undergoing<br>surgery or chemotherapy<br>treatments                  | Bottom-up | Public payer<br>perspective (Greek<br>NHS) | None                                                                                |
| Souliotis et al.<br>(2019)    | Retrospective study;<br>hospital medical<br>records, (Athens)                     | 144, patients with<br>terminal stage<br>NSCLC or SCLC             | Stage III B / IV                                   | 2011–2014<br>(3 years)   | Lung cancer patients at<br>end-of-life stage                                  | Bottom-up | Public payer<br>perspective (Greek<br>NHS  | None                                                                                |
| Mountzios et al.<br>(2021)    | Retrospective,<br>medical<br>charts/records,<br>clinical centers across<br>Greece | 59 patients<br>diagnosed with<br>EGFR mutation-<br>positive NSCLC | Locally advanced<br>or metastatic<br>(Stage III/IV | 2015–2020<br>(5 years)   | Patients treated with<br>afatinib (1st, 2nd line, or<br>beyond)               | Bottom-up | Public payer<br>perspective (Greek<br>NHS  | Hellenic Cooperative<br>Oncology<br>Group internal research<br>grant (HE_TRANS_NSCL |
| Kokkotou et al.<br>(2021)     | Retrospective,<br>hospital-based<br>registry,(Athens)                             | 122, patients<br>terminal stage<br>NSCLC or SCLC                  | Stage IV                                           | 2015–2018<br>(4 years)   | Lung cancer patients at<br>end-of-life stage                                  | Bottom-up | Public payer<br>perspective (Greek<br>NHS) | None                                                                                |
| Linardou et al.<br>(2023)     | Retrospective,<br>multicenter; data<br>from 18 clinical<br>centers across Greece  | 346, patients<br>diagnosed with<br>advanced NSCLC                 | Stage IV                                           | 2015–2019 (4<br>years)   | Patients previously<br>treated with other<br>therapies, starting<br>Nivolumab | Bottom-up | Public payer<br>perspective (Greek<br>NHS  | Hellenic Cooperative<br>Oncology Group                                              |

This extraction form was designed to capture information concerning authors, publication year, study design, year of data collection, sample size, study perspective as well as the cost outcome of each study. The economic burden of lung cancer is generally categorized into direct and indirect cost.

#### Table 1: Study selection criteria considered in the search strategy

|                   | Inclusion criteria                                                                             | Exclusion criteria                                            |
|-------------------|------------------------------------------------------------------------------------------------|---------------------------------------------------------------|
| Population        | Lung Cancer                                                                                    | -                                                             |
| Interventions     | • -                                                                                            | _                                                             |
| Comparators       | • -                                                                                            | -                                                             |
| Outcomes          | <ul> <li>Original studies investigating direct or indirect<br/>cost for lung cancer</li> </ul> | -                                                             |
| Study design/type |                                                                                                | <ul><li>Reviews or meta-analysis</li><li>Editorials</li></ul> |
|                   | <ul> <li>Prospective, retrospective, observational<br/>studies,</li> </ul>                     | • Comments                                                    |

- The study by Mountzios et al. [9] examined 59 patients with advanced NSCLC and EGFR mutations treated from 2015 to 2020, reporting an average direct cost of €25,334 per patient, primarily driven by drug acquisition (€21,865), with additional monitoring (€3,325) and adverse event management (€143) costs.
- In a study by Linardou et al. [8] involving 346 NSCLC patients previously treated with immunotherapy, the average cost per patient was €58,974, largely due to drug acquisition (€58,008), with minor costs for monitoring (€570), administration (€203), and adverse event treatment (€192). This was based on an average of 27.53 nivolumab treatment cycles per patient.
- Both studies emphasize drug acquisition as the dominant cost driver, with afatinib and nivolumab accounting for a large portion of the total costs. In Mountzios et al.,[9] afatinib represented the majority of the €25,333.68 per patient, while in Linardou et al.,[8] nivolumab's €58,008 was the primary cost component.
- The study by Zarogoulidou et al. [12] examined direct and indirect costs of lung cancer management in

| Countries             | • Greece                                                     | <ul> <li>Countries other than Greece</li> </ul>        |
|-----------------------|--------------------------------------------------------------|--------------------------------------------------------|
| Date of publication   | <ul> <li>Study published until June 2024</li> </ul>          | _                                                      |
| Language restrictions | <ul> <li>English language publications</li> </ul>            | -                                                      |
|                       |                                                              | <ul> <li>Pharmacoeconomic modelling studies</li> </ul> |
|                       |                                                              | Presentations at scientific conferences                |
|                       | <ul> <li>(Published full-paper of original study)</li> </ul> | <ul> <li>Letters to the Editor</li> </ul>              |

Results

- 7 studies[8-14] met the selection criteria and were included in the review (Figure 1).
- 88% of the studies were conducted over an adequate time horizon of one year or more, whereas two studies[8-9] described as multicentric or nationwide while five were conducted at a single center[8-14] (Table 2).
- Most of the included studies were retrospective (5 studies)[8,9,11, 13,14] and all used a bottom-up costing approach. In addition, all the studies[8-14] were conducted from a Greek public payer perspective while only one study had been also considered the societal perspective[12] (Table 2).
- Key components of direct medical costs in healthcare for lung cancer include hospitalizations, drug acquisition, diagnostic testing, and physician services, with drug and hospital costs forming the bulk of expenses (Table 2).

Greece for 113 patients with NSCLC or SCLC at the University of Thessaloniki. The total direct cost was  $\in 1,853,984$ , with chemotherapy drugs as the largest expense (70%, or  $\in 1,216,421$ ), followed by growth factors ( $\in 147,373$ ) and hospitalization ( $\in 85,308$ ). The average direct cost per patient was estimated at  $\in 16,407$ . Indirect costs included 28,774 lost productivity days, mostly borne by patients (95%), highlighting the significant economic impact beyond healthcare costs.

Two studies [11,14] assessed the end-of-life care cost for lung cancer patients in the last six months of life and found that the most significant component of direct costs was pharmaceutical expenditures.

# Conclusions

The economic burden of lung cancer has increased substantially over the past decade in Greece. However, there is limited evidence on both direct and indirect costs, as well as on the costs associated with different types of lung cancer. Further real-world studies are needed in Greece to address this gap.

|    |                                                                         | Re  | ferences                                                                        |
|----|-------------------------------------------------------------------------|-----|---------------------------------------------------------------------------------|
| 1. | Sung, H., CA Cancer J Clin, 2021. 71(3): p. 209-249.                    | 8.  | Linardou, H., et al., RAnticancer Res, 2023. 43(6): p. 2799-2812.               |
| 2. | Sun, S., et al. Nat Rev Cancer, 2007. 7(10): p. 778-90.                 | 9.  | Mountzios, G., et al., A Lung Cancer (Auckl), 2021. 12: p. 93-102.              |
| 3. | Luengo-Fernandez, R., et al., Lancet Oncol, 2013. 14(12): p. 1165-1174. | 10. | Leftakis, A. and M. Geitona, C Intensive Crit Care Nurs, 2001. 17(6): p. 322-30 |
| 4. | Corral, J., et al.,BMC Health Serv Res, 2015. 15: p. 70.                | 11. | Souliotis, K., et al., Health Serv Res Manag Epidemiol, 2019. 6:                |
| 5. | Vergnenegre, A., et al., Curr Med Res Opin, 2014. 30(3): p. 463-70      | 12. | Zarogoulidou, V., et al., E J Thorac Dis, 2015. 7(Suppl 1): p. S12-9.           |
| 6. | Isla, D., et al., T. Clin Transl Oncol, 2011. 13(7): p. 460-71.         | 13. | Gkogkozotou,V.I., et al., PELung Cancer Manag, 2018. 7(2):                      |
| 7. | Moher, D., et al., PLoS Med, 2009. 6(7):                                | 14. | Kokkotou, E., et al., J Comp Eff Res, 2021. 10(4): p. 315-324.                  |

ISPOR ANNUAL EUROPEAN CONGRESS, 17 – 20 NOVEMBER 2024, BARCELONA, SPAIN **Contact details**: g.gourzoulidis@hte.gr