Systematic Literature Review of the Economic Burden of Hemophilia A and B

Cynthia Khanji,¹ Weyinmi Nuabor,² Hae Kyung Kim,¹ Alexis Yubin Sohn,¹ Ruth Kim,¹ Annete Njue²

¹Pfizer Inc., New York, NY, United States; ²RTI Health Solutions, Manchester, United Kingdom

BACKGROUND

- Hemophilia is a hereditary condition in which the body's blood clotting mechanism is disrupted due to a deficiency of coagulation factors.
 - Hemophilia A is an X-linked bleeding disorder due to reduced blood levels of coagulation FVIII that affects approximately 1 of every 5,000 to 10,000 live-born males.¹
 - Hemophilia B is also an X-linked disorder that occurs predominantly in males, with an incidence of approximately 1 in 25,000 births, and it is associated with abnormal bleeding due to reduced levels of or the defective or absence of FIX.¹
- Hemophilia A and B are clinically indistinguishable from each other, and the bleeding tendencies associated with each disorder tend to correlate directly with plasma concentrations of FVIII and FIX, respectively.^{1,2}

RESULTS

- After screening of 6,057 titles and abstracts, 683 articles were progressed to level 2 screening, of which 151 were selected. Of these, 32 studies reported economic burden outcomes. Heterogeneity across studies limited the comparison of results.
- This SLR found that both hemophilia A and B are associated with significant economic burden, and the major drivers of costs were hemophilia-related treatment, severe disease, and inhibitor presence.

Direct and Indirect Costs and HCRU

• Across several countries, including Belgium, Finland, France, Italy, and the US, hemophilia-related treatment (factor replacement therapy) was the key driver of direct costs in patients with hemophilia A or B, accounting for up to 99% of

Impact of Disease Severity on Costs and Productivity

- Healthcare costs were found to increase with increasing disease severity (Table 3).
 - In Europe, data from the CHESS II study found that the mean adjusted direct medical costs were 4.7 times higher for severe versus mild hemophilia A or B without inhibitors (€3,949 vs. €844), and mean societal cost was €11,115 higher for patients with severe versus mild disease (2020 cost year).¹⁶
 - In the US, data from a cohort study assessing the economic burden of hemophilia B reported that the annual total healthcare cost per patient was 7.8 times higher in patients with severe disease than in those with mild disease (US \$632,088 vs. US \$80,811).¹² Patients with severe hemophilia B had 84-fold higher total healthcare costs than controls without hemophilia (US \$632,088 vs. US \$7,546), whereas those with mild disease had 7-fold higher costs than controls (US \$80,811 vs. US \$11,372) (2019 cost year).

- Prophylactic administration of factor replacement therapy (FVIII for hemophilia A and FIX for hemophilia B) is the standard of care for hemophilia. They are administered intravenously for routine prophylaxis or as on-demand treatment.³
- However, patients with hemophilia treated with factor replacement therapy are at increased risk of developing inhibitory antibodies (inhibitors) directed against FVIII or FIX that neutralize the effects of factor replacement therapy.¹
- Nonfactor therapies also are available for routine prophylaxis; more recently gene therapies have been approved for use in patients with hemophilia A and B.⁴⁻⁶

OBJECTIVES

• This SLR aimed to investigate the economic burden of hemophilia A and B, including costs (direct, indirect, and/or total), HCRU, and cost drivers.

METHODS

- Literature searches were conducted in Embase, MEDLINE, and MEDLINE In-Process for English-language articles describing the clinical, humanistic, and economic burden of hemophilia.
- The search was limited to articles published from November 2012 through November 2022. Bibliographic lists of included studies and recent systematic reviews were also searched.
- Eligible studies included patients aged \geq 12 years with hemophilia A or B with or without inhibitors.
- Studies were selected after a 2-level screening process. Titles and abstracts (level 1) and full-text articles (level 2) were reviewed by one researcher with a 10% check by a second researcher.

- total direct costs (Table 1).⁷⁻¹³
- In a US retrospective cohort study, the annual total healthcare costs per patient and HCRU were significantly higher in patients with hemophilia B than in matched controls.¹²
 - The mean annual total healthcare costs per patient for patients with hemophilia B (US \$201,635) were over 25-fold higher than for matched controls (mean, US \$7,879) (*P* < 0.001 between groups).
 - Patients with hemophilia B also had significantly higher HCRU than matched controls (Table 2).
- Patients with severe hemophilia B were more likely to visit a physical therapist than those with mild or moderate disease (23%, 26%, and 50% for mild, moderate, and severe disease, respectively).¹⁴ Disability benefits were also more common among those with severe (38%) or moderate hemophilia (56%) than among those with mild hemophilia (20%).¹⁴
- The key drivers of indirect costs in adults were work stoppage or early retirement due to hemophilia^{9,10,15}; in children, the main driver was productivity loss of caregivers.⁹

Table 1. Direct, Indirect, and Total Costs Country;

- Patients with severe hemophilia A or B also experienced more absenteeism than patients with mild disease.²⁰
 - A US study showed that regardless of the birth cohort, the proportion of participants with severe hemophilia that missed \geq 10 days of school or work in the preceding year due to lower or upper extremity joint problems was 2 or 3 times that of males of the same age with mild hemophilia (Figure 1).

Impact of Inhibitors on Cost and HCRU

- Cost and resource use were impacted by inhibitor status. Data from Portugal showed that patients with hemophilia A or B with inhibitors had 3.3 times higher costs than patients with hemophilia A or B without inhibitors (€134,032 vs. €40,318 per year, respectively; P = 0.030).¹⁸
- Patients with hemophilia A without inhibitors treated with FVIII were less likely to be hospitalized than patients with inhibitors (annual hospitalization rate, 41.2% vs. 64.1%, respectively).⁸

Population	Author (year), country/ region	Cost data description (cost year)	Costs by hemophilia severity			
			Mild	Moderate	Severe	
HA	_					
HA on prophylaxis (N = 96)	Ventola et al. (2021) ¹⁷ Finland	Annual mean total cost of hemophilia care/patient (2019)	€2,520	€126,625	€175,818	
HA (N = 72)	Rocha et al. (2015) ¹⁸ Portugal	Mean total direct costs (NR)	€793	€8,495	€77,587	
Patients with HA (N = NR)	Café et al. (2019) ¹⁹ Portugal	Annual mean total direct cost/patient (2017)	€168	€4,320	€80,055	
Children with HA (N = NR)	Café et al. (2019) ¹⁹ Portugal	Annual mean total direct cost/patient (2017)	€168	€295	€90,446	
HB						
HB (N = 385)	Buckner et al. (2021) ¹² US	Annual mean total healthcare cost/ patient (2019)	US \$80,811	US \$137,455	US \$632,08	
HB on prophylaxis (N = 21)	Ventola et al. (2021) ¹⁷ Finland	Annual mean total cost of hemophilia care/patient (2019)	€8,794	€176,330	€139,335	
HA or HB						
Adults with HA or HB (N = 707)	Rodriguez- Santana et al. (2022) ¹⁶ Europe	Annual mean adjustedª direct medical cost (2020)	€844	€3,313 (<i>P</i> < 0.001 vs. mild)	€3,949 (<i>P</i> < 0.001 vs. mild)	
Adults with HA or HB (N = 286)	Rodriguez- Santana et al. (2022) ¹⁶ Europe	Annual mean adjustedª societal cost (2020)	€3,101	€5,925 (<i>P</i> < 0.01 vs. mild)	€14,216 (<i>P</i> < 0.001 vs. mild)	

• Data extractions were performed by one researcher and cross-checked by a second researcher.

CONCLUSION

- Hemophilia is associated with substantial economic burden due to hemophilia-related treatment.
- In several countries, higher costs were associated with severe disease and presence of inhibitors.
- Significant differences in costs were observed between countries, likely due to variations in sample sizes, disease management, and health system strategies.

ABBREVIATIONS

EHL = extended half-life; FIX = factor IX; FVIII = factor VIII; HA = hemophilia A; HB = hemophilia B; HCRU = healthcare resource use; NR = not reported; SHL = standard half-life; SLR = systematic literature review; US = United States.

	REFERENCES		
1.	Thorat T, et al. J Manag Care Spec Pharm. 2018;24(7):632-42.	9.	Kodra Y, et al. Blood Transfus. 2014;12(Suppl 3):s567-75.
2.	Iorio A, et al. Cochrane Database Syst Rev. 2011(9):CD003429.	10. 11.	Burke T, et al. Orphanet J Rare Dis. 2021;16(1):143. Croteau SE, et al. J Manag Care Spec Pharm.
2	Srivastava V. ot al. Haomonhilia. 2020:26/Suppl		2021.22/216.26

HA (n = 189)	Retrospective administrative claims analysis	US; Croteau et al. (2021) ¹¹	2017	Total direct costs: US \$287,055 Cost of FVIII: US \$264,777
HA (n = NR)	Observational study	US; Zhou et al. (2015) ¹³	2011	Total direct costs: US \$230,662 Total indirect costs: US \$12,293 Cost of FVIII: US \$208,070
HB				
Severe HB (n = 75)	Cross-sectional analysis: CHESS II	Europe; Burke et al. (2021) ¹⁵	2021	Total direct costs: €235,723 Total indirect costs: €8,973 Treatment costs: €232,328
Severe HB receiving SHL treatment (n = 42)	Cross-sectional analysis: CHESS II	Europe; Burke et al. (2021) ¹⁵	2021	Total direct costs: €190,247 Total indirect costs: €11,907 Treatment costs: €186,528
Severe HB receiving EHL treatment (n = 33)	Cross-sectional analysis: CHESS II	Europe; Burke et al. (2021) ¹⁵	2021	Total direct costs: €293,601 Total indirect costs: €4,083 Treatment costs: €290,620
HB (n = 44)	CHESS-US	US; Burke et al. (2021) ¹⁰	2019	Total direct costs: US \$614,886 Cost of FIX: US \$611,971
HB (n = 454)	Retrospective cohort study	US; Buckner et al. (2021) ¹²	2019	Total direct costs: US \$201,635 Treatment costs: US \$152,951
Mixed population (HA/HB)			
				Mean lifetime costs
HA or HB (n = NR)	Probabilistic model	Belgium; Henrard et al. (2014) ⁷	2011	2011 birth-year Belgian cohort ^a : Total costs: \notin 97,336,761 Direct costs: \notin 91,773,744 Indirect costs: \notin 5,563,016 Treatment costs: \notin 75,446,373 HA treatment cost: \notin 69,021,625 HB treatment cost: \notin 6,424,748

weight-adjusted factor consumption

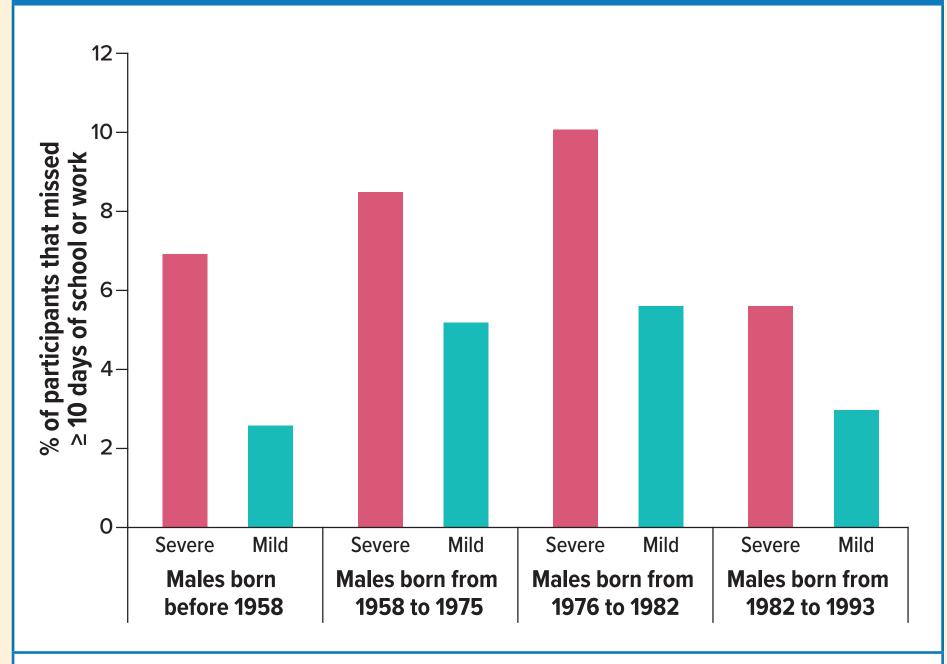
Figure 1. Absenteeism by Hemophilia Disease Severity in 4 Birth Cohorts

- ShvaStava A, et al. naemophila. 2020,20(Suppl 6):1-158.
 - FDA. https://www.fda.gov/news-events/pressannouncements/fda-approves-first-gene-therapyadults-severe-hemophilia.
- 5. Pfizer Press Release. https://www.pfizer.com/news/ press-release/press-release-detail/us-fda-approvespfizers-beqveztm-fidanacogene-elaparvovec.
- PR Newswire. https://www.prnewswire.com/ news-releases/fda-approves-first-gene-therapy-totreat-adults-with-hemophilia-b-301685648.html.
- Henrard S, et al. Orphanet J Rare Dis. 2014;9:39.
- Laurendeau C, et al. Eur J Health Econ. 2022;23(1):23-32.
- ZUZI, ZI(3).310-Z0.12. Buckner TW, et al. Blood Adv. 2021;5(7):1954-62. 13. Zhou ZY, et al. J Med Econ. 2015;18(6):457-65. 14. Buckner TW, et al. Eur J Haematol. 2017;98(Suppl 86):5-17. 15. Burke T, et al. Orphanet J Rare Dis. 2021;16(1):521. 16. Rodriguez-Santana I, et al. Orphanet J Rare Dis. 2022;17(1):148. 17. Ventola H, et al. Haemophilia. 2021;27(1):e30-9.
- 18. Rocha P, et al. BMC Health Serv Res. 2015;15:484.
- 19. Café A, et al. Orphanet J Rare Dis. 2019;14(1):211.
- 20. Mazepa MA, et al. Blood. 2016;127(24):3073-81.

CONTACT INFORMATION

Alexis Yubin Sohn, PharmD, MPH, MS Director, HTA Value & Evidence Hemophilia

Pfizer Inc.


New York, NY 10001, United States Phone: +1.929.720.1000 Email: alexis.sohn@pfizer.com

No time discounting.

HCRU	Patients with HB (N = 454)	Matched ^a controls (N = 454)	<i>P</i> value
Inpatient admissions			
No. of admissions	0.3 (0.6)	0.1 (0.3)	< 0.001
Days of hospitalization	1.2 (3.7)	0.3 (1.5)	< 0.001
No. of emergency department admissions	0.6 (1.2)	0.2 (0.6)	< 0.001
No. of outpatient visits	17.7 (22.9)	8.0 (11.0)	< 0.001

Source: Mazepa et al. (2016).²⁰

Presented at: ISPOR Europe 2024; 17-20 November 2024; Barcelona, Spain