

Cost-Effectiveness Analysis of Stool-based CRC Screening Tests for Individuals Aged 45 Years

Mingjun Rui¹, Yingcheng Wang¹, Joyce H.S. You¹

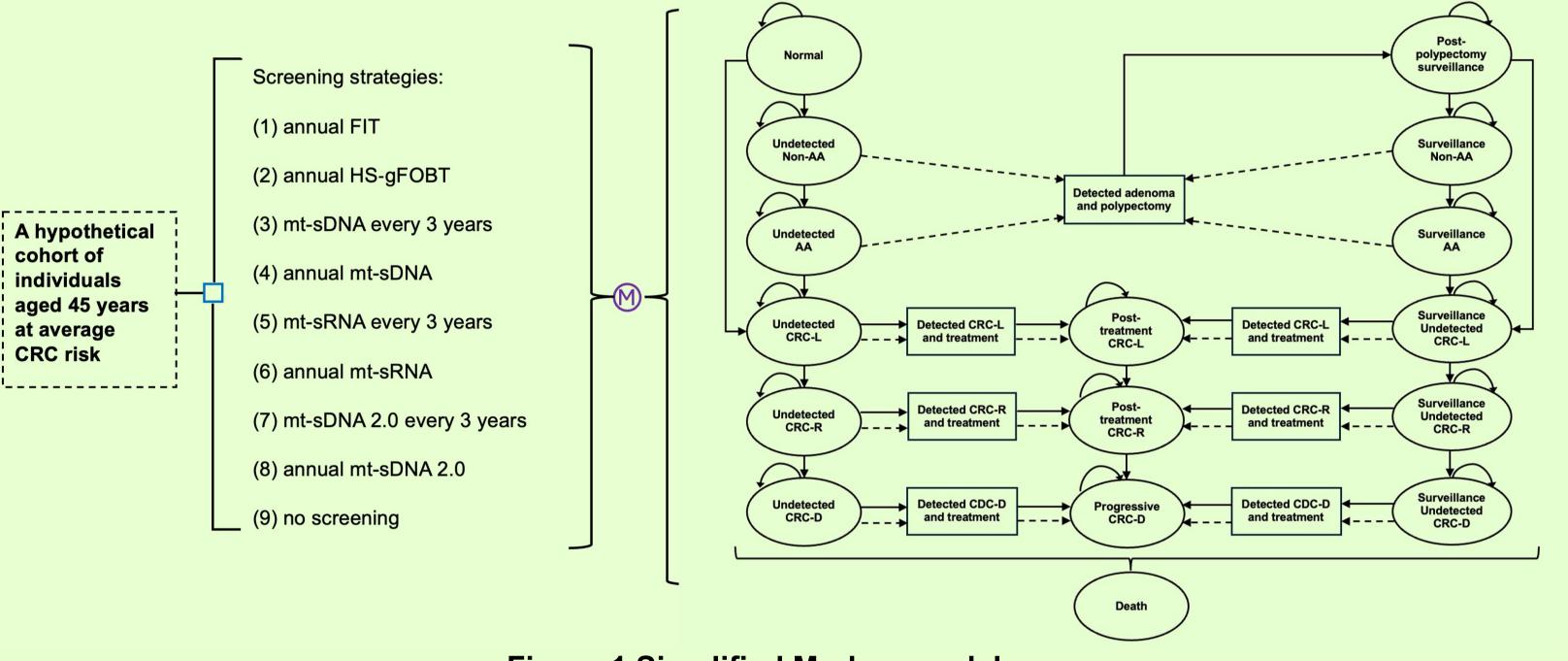
PT13

¹ School of Pharmacy, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China

Background

- Colorectal cancer (CRC) is a major cause of cancer-related deaths globally.
- Two innovative stool-based CRC screening technologies (mt-sRNA and mtsDNA 2.0) have recently emerged.
- This study evaluated the cost-effectiveness of innovative stool-based CRC screening tests compared to previously approved stool-based CRC screening methods (FIT, HS-gFOBT and mt-sDNA).

Methods


- **Perspective**: US payer's perspective
- **Model**: A Markov model (Figure 1)
- **Time horizon**: lifetime with yearly cycle
- Patient Population: Individuals aged 45 years at average risk with undetected adenoma/CRC status and no CRC symptoms

Base case results

Comparing each strategy to the next less costly option, 6 of 9 strategies were dominated and eliminated from further cost-effectiveness analysis. Annual mt-sDNA 2.0 gained the highest QALYs (21.58 QALYs), followed by annual FIT (21.56 QALYs) and no screening (21.42 QALYs). The ICER of annual mt-sDNA 2.0 versus annual FIT was US\$463,088/QALY, exceeded the willingness-to-pay (WTP) of US\$10,000/QALY. Annual FIT emerged as the preferred strategy with an ICER of US\$952/QALY.

Strategy	Incremental cost	Incremental	ICER (US\$/	
	(US\$)	QALY	QALY)	
	/ersus "no screening'	,		
No screening	_	_	_	
FIT every year	141	0.1484	952	
HS-gFOBT every year	234	0.1456	1,605	
mt-sDNA 2.0 every 3 years	2,463	0.1430	17,226	
mt-sRNA every 3 years	2,604	0.1470	17,716	
mt-sDNA every 3 years	2,626	0.1299	20,216	
mt-sDNA 2.0 every year	8,079	0.1655	48,792	
mt-sDNA every year	8,554	0.1600	53,480	
mt-sRNA every year	8,556	0.1619	52,862	
Versus the next less costly strategy (dominated strategies excluded)				
Strategy	Incremental	Incremental	ICER (US\$/	
	cost (US\$)	QALY	QALY)	
No screening				
annual FIT	141	0.1484	952	
annual mt-sDNA 2.0	7,937	0.0171	463,088	

- Intervention and comparator: Nine screening strategies were evaluated:
 (1) annual FIT; (2) annual HS-gFOBT; (3) mt-sDNA every 3 years; (4) annual mt-sDNA; (5) mt-sRNA every 3 years; (6) annual mt-sRNA; (7) mt-sDNA 2.0 every 3 years; (8) annual mt-sDNA 2.0; (9) no screening.
- Primary outputs: CRC cases, deaths, direct medical costs, qualityadjusted life-years (QALYs), and incremental cost-effectiveness ratios (ICERs).
- Sensitivity analyses: One-way sensitivity analysis and probabilistic sensitivity analysis (PSA) were performed to explore the uncertainty in this model

Sensitivity analysis

- Annual HS-gFOBT became the preferred cost-effective strategy when the sensitivity of FIT was below 21.3% or the specificity of HS-gFOBT exceeded 94.2% in the one-way sensitivity analysis.
- In probabilistic analysis, the probabilities to be preferred cost-effective option (at WTP US\$100,000/QALY) were 84.37% for annual FIT,

Figure 1 Simplified Markov model

Table 1 Clinical variable

Parameters	Value	Range
FIT		
CRC sensitivity (%)	73.3	60.3-83.9
Advanced adenoma sensitivity (%)	23.8	20.8-27.0
Non-advanced adenoma sensitivity (%)	7.6	6.7-8.6
Specificity (%)	96.4	95.8-96.9
HS-gFOBT		
CRC sensitivity (%)	70.0	50.0-87.0
Advanced adenoma sensitivity (%)	23.9	17.7-49.4
Non-advanced adenoma sensitivity (%)	10.0	10.0-26.2
Specificity (%)	92.5	90.0-95.0
mt-sDNA		
CRC sensitivity (%)	93.3	83.8-98.2
Advanced adenoma sensitivity (%)	42.4	38.9-46.0
Non-advanced adenoma sensitivity (%)	17.2	15.9-18.6
Specificity (%)	89.8	88.9-90.7
mt-sDNA 2.0		
CRC sensitivity (%)	93.9	87.1-97.7
Advanced adenoma sensitivity (%)	44.0	41.0-47.0
Non-advanced adenoma sensitivity (%)	29.0	26.1-31.9
Specificity (%)	92.7	92.2-93.1
mt-sRNA		
CRC sensitivity (%)	94.0	81.0-99.0
Advanced adenoma sensitivity (%)	47.1	46.3-50.0
Non-advanced adenoma sensitivity (%)	35.5	32.0-39.1
Specificity (%)	88.0	87.0-89.0

15.63% for annual HS-gFOBT and 0% for other screening strategies.

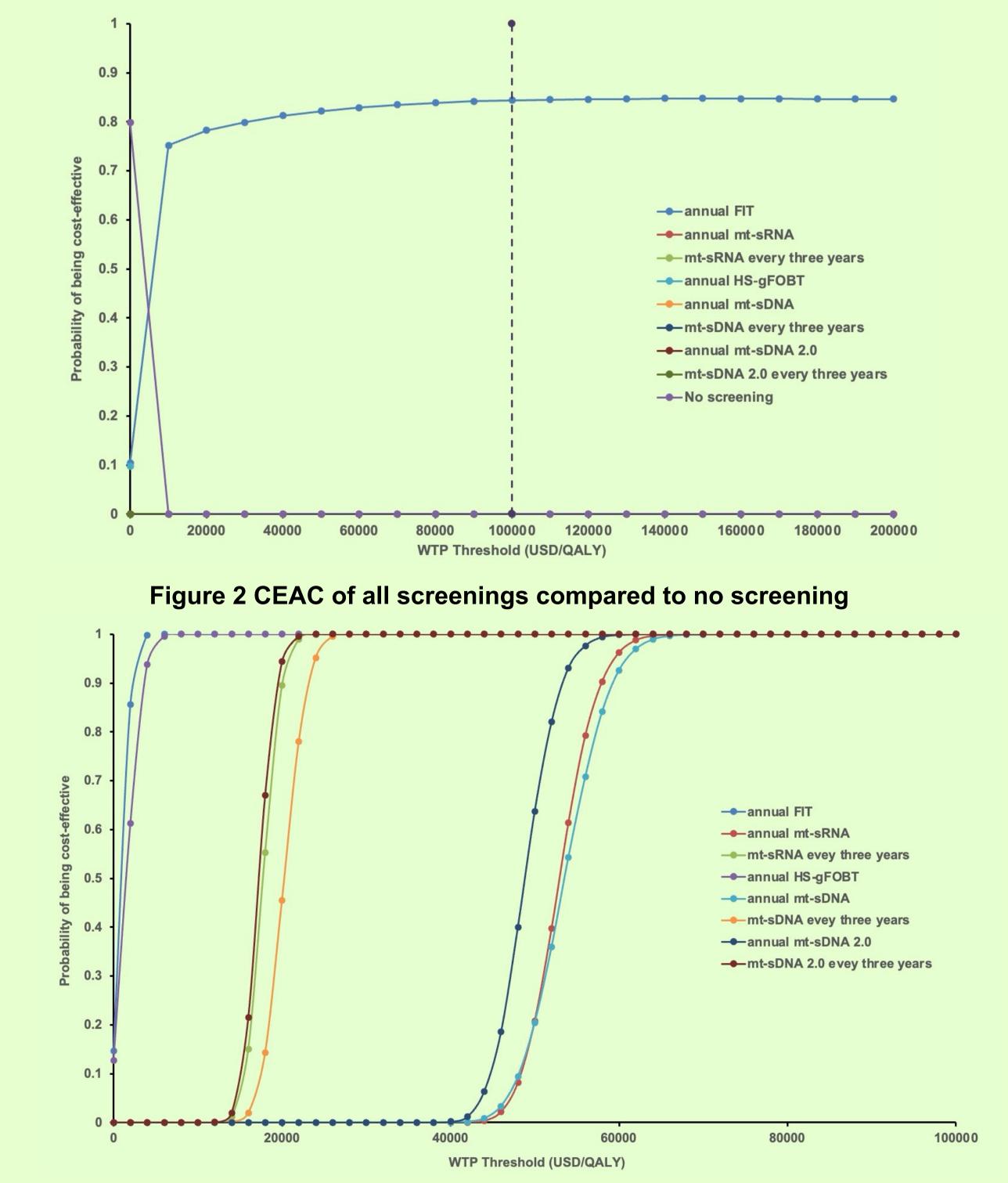


Figure 3 CEAC among all screenings

Conclusion

 Annual FIT appared to be the preferred strategy and the costeffectiveness is subject to the sensitivity of FIT for advanced adenomas and the specificity of HS-gFOBT.

First author: Mingjun Rui. Email: mingjunrui@link.cuhk.edu.hk; Corresponding to: Joyce H.S. You Email: joyceyou@cuhk.edu.hk