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Background Results
e Meta-analysis (MA) and its extension, network meta-analysis (NMA) provide a means for Figure 1. Model averaging weights applied to each ML-NMR parametric form*
synthesizing all available evidence regarding relative treatment effects.
o Multi-level network meta-regression (ML-NMR) models involve fitting parametric models to Best (per LOQOIC) Pseudo-BMA+ Stacking
iIndividual patient-level data (IPD) and pseudo-IPD, which incorporate covariates (prognostic Log-logistic NN B 05
factors and effect modifiers) for population adjustment.? Lognormal 0 (ALOOIC = 13)
o Structural uncertainty in terms of the choice of parametric model can be assessed with model M-Spline (7 knots) 0 (ALOOIC = 45)
averaging methods, such as Bayesian model averaging (BMA).? Weibull (PH) 0 (ALOOIC = 57)

Weibull (AFT) 0 (ALOOIC = 72)

Ob - ec’[ | ve Gompertz 0 (ALOOIC = 993)

J Exponential 0 (ALOOIC = 130)

e The aim was to explore model averaging techniques for a time-to-event analysis using ML-NMR 0.00 0.25 0.50 0.75 1.00 0.00 0.25 050 0.75 1.00 0.00 0.25 050 0.75 1.00
based on a case study in newly diagnosed multiple myeloma (ndMM). Weight

Abbreviations: AFT = accelerated failure time; BMA = Bayesian model averaging; ALOOIC = difference in leave-one-out information criterion relative to
best; PH = proportional hazards.

I\/I et h O d S * Gamma and generalized gamma models did not converge
: Figure 2. Kaplan-Meier PFS and marginal ML-NMR predictions in target population
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ML-NMR adjustment factors: Fit data to parametric forms: 04 ®  —— Weibull (AFT)

© Age | | 1. Lognormal 6. Gompertz 0.2 —— Gompertz

° International staging system stage 2. Log-logistic 7. Exponential ' ~ —— Exponential
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e Post-autologous stem cell transplant 3. Weibull (PH) 8. Gamma 0.0 =
response 4. Weibull (AFT) 9. Generalized 0 120 240 360 480 O 120 240 360 480

. Sex 5.  M-spline (7-knot) gamma Time

Abbreviations: AFT = accelerated failure time; BMA = Bayesian model averaging; Len = lenalidomide; ML-NMR = Multi-level network meta-regression;
Pbo = placebo; PFS = progression-free survival, PH = proportional hazards; RCT = randomized controlled trial
. ) ) * 4 years represents the maximum observed period in Attal 20125 (the RCT having the shortest duration of follow-up); however, the observed period in

Tarq el D O D u I ation: OUtD uts: McCarthy 2012° extends beyond this range (as shown in the observed data above).

e  Target population defined by patient e  Marginal difference (A) in RMST up to:
characteristics in McCarthy 20126 o 4years: max'muni‘ Ob;e_rVEdh“”?eT Figure 3. Model-specific, model-averaged & stacked marginal PFS ARMST in target

o 40 years: extrapolated time horizon population

* Using multinma package in R (version 4.3.1) 4 years (m aximum observed period*)

1 Maximum observed time in the RCT having the shortest duration of follow-up (Attal 2012)°>

Abbreviations: AFT = accelerated failure time; PH = proportional hazards; RMST = restricted mean survival time. Thal vs. Len Len vs. Pbo Thal vs. Pbo

Exponential = 4?; ' - - :16 ' = 22.:2
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STEP 3: Model selection and averaging Weibull (AFT) *— - —t = = ®

_ ) Weibull (PH) - @ - - o - - ®
Model selection was performed using three approaches: M-Spline (7 knots) : ‘. : : e : : Py
o ——— % —— — s
1. “BESt” m0d9| Log—logistic 5-73 7-_56 1-.82
e The ‘best’ model was selected using the leave-one-out information criterion (LOOIC),* similar Pseudo-BMA* ey 7 by
_ . Stacking O - O

to standard model selection in NMA.410.11
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2. Averaging over models with “pseudo-BMA+” weights 40 years (extrapolated period)

e Averaging with pseudo-BMA+ weights is similar to standard BMA, but does not require Exponential ‘.- - 1 - — s
calculating marginal likelihoods, which can be computationally expensive. Instead, the Gompertz b ® — b
pseudo-BMA+ weights are based on the LOOIC of each model. As such, the ‘best’ model Welbull (AFT) | & Tz iy

: : i : : : . Weibull (PH) ™ @ ' - @ T 511.

according to the LOOIC is given the highest weight. To reduce the risk of overfitting, the M-Spline (7 knots) » S : | - ®
‘Bayesian bootstrap’ regularizes the weights away from the extremes of 0 and 1.12 L ognormal ‘o ‘o ®
Log-logistic _320939: 3??:6 Z.:):

3. Stacking Peeudo-BMA+ — . | T2 >
o . . . o . Stacking ® ' ' ® o

o Stacking is a model averaging technique which seeks to optimize out-of-sample prediction
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and has been shown to outperform standard BMA in M-open settings (i.e., when the ‘true’

model is not amongst those in the list of candidate models).1213 ARMST (months)

Abbreviations: AFT = accelerated failure time; BMA = Bayesian model averaging; Len = lenalidomide; PFS = progression-free survival, PH = proportional

* Using the loo package in R (version 4.3.1)14 hazards; Pbo = placebo; RMST = restricted mean survival time; Thal = thalidomide.
* See footnote in Figure 2.
Results Discussion
Figure 1 presents the LOOIC & model averaging weights for each model. Figure 2 and Figure 3 o Results summary: The pseudo-BMA+ and stacking methods appropriately capture structural
llustrate the predicted PFS & ARMST at 4 and 40 years in the target population for each approach. uncertainty and resulted in wider credible intervals than with the ‘best’ model (per LOOIC).
1 “Best” model o  Stacking approach is considered an optimal choice when the true model may not be captured

within the set of candidate models,*?-13 which may be appropriate for ML-NMR case study.
o Not explored: Averaging across models with different covariates is possible, but covariate

e Ofthe 7 models that converged, log-logistic model was best fit to the data based on LOOIC.

2. Averaging over models with “pseudo-BMA+” weights selection should be determined a priori based on literature review and clinical input.t>-17

Log-logistic model carried the largest weight (0.82), followed by lognormal (0.18); other models o If exploring the role of covariates as a sensitivity, spike-and-slab priors may provide a single
contributed negligible weight (<0.01). model with equivalent results to model averaging.!8

e ARMST estimates were similar to best fitting (log-logistic) model estimates, although shited e Future research: Case study model weights were informed by statistical fit to the observed
toward the lognormal, with wider 95% credible intervals (Crls). period; however, information from clinical experts to narrow the subset of plausible models or

3. Stacking Inform model weights based on plausibility may be an area of future research.

«  Four models contributed to averaged estimates; lognormal model had largest weight (0.62). e Key message: For ML-NMR, implementing pseudo-BMA+ and stacking Is relatively

straightforward and should be considered to address structural uncertainty for time-to-event

o Generally, stacking estimates were consistent with the best model and pseudo-BMA+, with wider

95% Cirls. outcomes.
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