Cost-effectiveness of a 13-valent pneumococcal conjugate vaccine compared with currently available pneumococcal conjugate vaccines in Indian children.

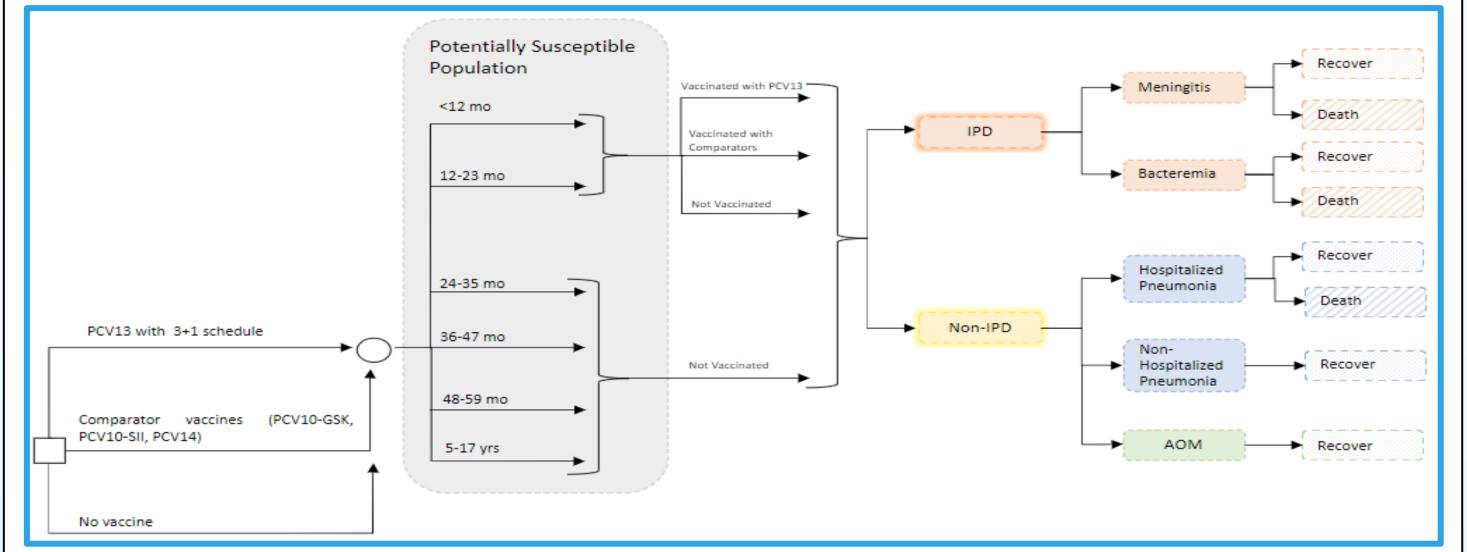
Santosh Ramesh Taur¹, Ritika Rampal¹, Sripriya Sathyanarayanan¹, Faisal B Nahdi², Warisa Wannaadisai³, Liping Huang³ ¹Pfizer Ltd., India, ²Rainbow Children's Hospital, Hyderabad, India, ³Health Economics and Outcomes Research, Pfizer Inc., New York, NY, USA

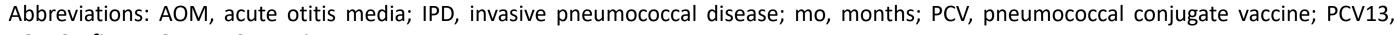
INTRODUCTION

- Although PCVs have greatly reduced the burden and costs of pneumococcal disease (PD) in many countries, a significant burden remains.¹
- In India, PD accounted for almost a quarter (23.4%) of all deaths in children under the age of 5 in 2015.²
- In India, an estimated 10.60 million and 12.65 million annual PD cases are attributable to serotypes contained in the pneumococcal conjugate vaccines (PCVs) PCV10-GSK and PCV13-Pfizer, respectively, resulting in an estimated 43,161 and 51,508 deaths.³
- One 13-valent (PCV13-Pfizer), two 10-valent (PCV10-GSK, PCV10-SII), and one 14-valent (PCV14-BioE) PCVs are currently available for infant immunization in India's private healthcare setting. PCV10-SII has been part of India's pediatric National Immunization Program (NIP) since 2021.^{4,5}

RESULTS

Base case analyses


- Over 10 years, PCV13-Pfizer was estimated to prevent an additional 255,060, 40,336, and 247,750 cases of PD, resulting in over 534,000, 86,500, and 520,200 QALY gains compared with PCV10-SII, PCV10-GSK, and PCV14-BioE, respectively (Table 3).
- Compared to PCV10-SII, PCV10-GSK, and PCV14-BioE, PCV13-Pfizer was estimated to result in additional cost savings of INR 22.5, INR 3.63, and INR 21.9 billion, respectively, from PD cases prevented.
- Given the greater disease prevention and higher PD-associated cost savings, PCV13-Pfizer was cost-effective versus the two 10-valent PCVs and was dominant over PCV14-BioE under the Indian WTP threshold.


OBJECTIVE

To compare the clinical and economic impacts of different PCVs and the cost-effectiveness of PCV13-Pfizer versus currently available PCVs in the Indian pediatric population under 18 years of age from an out-of-pocket payer perspective.

METHODS

A multicohort decision-analytic Markov model was developed to quantify the health and economic impact and cost-effectiveness of PCV13-Pfizer (3+1 schedule) versus currently available PCVs (PCV10-GSK [3+1], PCV10-SII [3+0], and PCV14-BioE [3+0]) from the Indian private healthcare payer perspective (Figure 1).

Table 3. Incremental base case results over a 10-year period.

	Incremental Outcomes						
Model outcomes	PCV13-Pfizer vs. PCV10-SII	PCV13-Pfizer vs. PCV10-GSK	PCV13-Pfzier vs. PCV14-BioE				
Clinical Outcomes							
Cases of IPD	-4,305	-758	-4,052				
Cases of all-cause hospitalized	72 600	11 027	71.000				
pneumonia	-73,609	-11,837	-71,860				
Cases of all-cause non-		4 010					
hospitalized pneumonia	-26,220	-4,213	-25,589				
Cases of all-cause AOM	-150,926	-23,528	-146,249				
Total PD cases	-255,060	-40,336	-247,750				
Number of deaths due to PD	-12,815	-2,075	-12,498				
Total QALYs	534,395	86,558	520,262				
Economic Outcomes							
Total vaccination cost (INR)	32,206,300,589	29,965,551,362	17,137,463,787				
Vaccine cost (INR)	32,206,300,589	29,965,551,362	17,137,463,787				
Total direct cost of disease (INR)	-22,511,181,084	-3,631,694,115	-21,923,187,897				
Net costs (INR)	9,695,119,505	26,333,857,247	-4,785,724,110				
Incremental Cost-Effectiveness Ratios (ICERs)							
ICER Per QALY (INR /QALY)	18,142	304,234					
	(Cost Effective)	(Cost Effective)	PCV13 dominant				

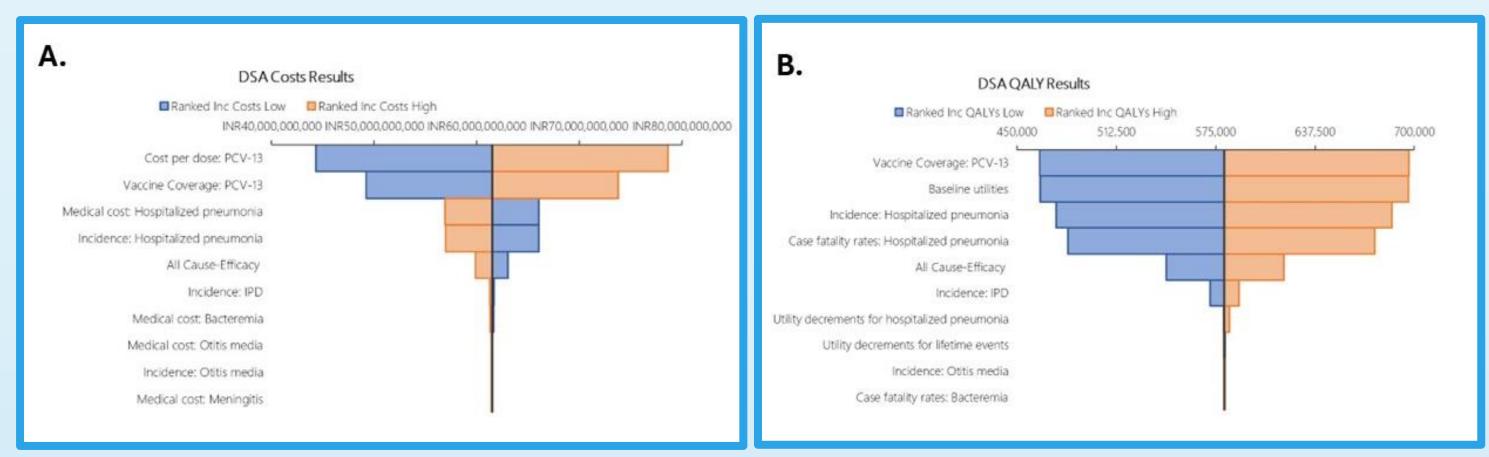
Abbreviations: AOM, acute otitis media; ICER, incremental cost-effectiveness ratio; INR, Indian Rupees; IPD, invasive pneumococcal disease; LY, life year; PCV, pneumococcal conjugate vaccine; QALY, quality-adjusted life year.

Sensitivity and scenario analyses

- In the DSA, the most influential factors for cost outcomes were the cost per dose of PCV13-Pfizer, vaccine coverage of PCV13-Pfizer, and medical cost of hospitalized pneumonia (Figure 2). The key drivers of QALY outcomes were vaccine coverage of PCV13, baseline utilities, and incidence of hospitalized pneumonia.
- Scenario analysis using different VE estimates suggested that PCV13-Pfizer remained cost-effective versus PCV10-SII and cost-saving versus PCV14-BioE (Table 4).

PCV13-Pfizer; PCV14, PCV14-BioE Figure 1. Model structure.

- Key model outcomes were PD cases, including invasive pneumococcal disease (IPD), which can manifest as meningitis or bacteremia, all-cause hospitalized and non-hospitalized pneumonia, and acute otitis media (AOM), and deaths due to IPD and hospitalized pneumonia, total costs, life-years (LYs), quality-adjusted life years (QALYs), and incremental cost-effectiveness ratio (ICER)
- Epidemiological and economic inputs for each age group were informed by Indian-specific data, model assumptions, and published literature. All model inputs are shown in Table 1.
- Direct vaccine effect (VE, i.e. the expected reduction in PD incidence attributable to serotypes covered by the vaccine among vaccinated children aged <2 years) was based on a real-world PCV13-Pfizer effectiveness study⁶ and PCV7 clinical studies.⁷⁻⁹ VE of PCV10-SII and PCV14-BioE were estimated based on the comparison of immunogenicity data between PCV13-Pfizer and PCV10-SII and PCV14-BioE with adjusting factors of 0.56 and 0.71, respectively. Table 2 shows VE estimates for post primary dose and post booster dose. The model did not consider indirect VE.
- The time horizon was 10 years with an annual discount rate of 3% applied to health and economic outcomes.
- The study assumed a vaccine coverage of 65.52% for primary and booster doses, and a willingness-topay (WTP) threshold of 3X India's GDP per capita in 2023 (INR 590,949)
- Vaccine cost per dose was assumed to be 2,495 INR, 2,599 INR, 3,991 INR, and 3,195 INR for PCV10-SII, PCV10-GSK, PCV13-Pfizer, and PCV14-BioE, respectively.¹⁰
- Deterministic sensitivity analysis (DSA) and scenario analysis using VE estimates based on opsonophagocytic assay (OPA) geometric mean titers (GMTs) for PCV10-SII and PCV14-BioE were conducted to examine model parameter uncertainties.


Table 1. Model inputs.

Parameter/Age	<12 mo	12-23 mo	24-35 mo	36-47 mo	48-59	mo	5-17 y
Population ^{11,12}	949,000	945,000	953,000	970,000	979	,000	13,456,000
Annual incidence rate (per 100,000)							
IPD ¹³	49.90	17.80	17.80	17.80	17.80		17.80
All-cause Hospitalized pneumonia ¹	1,011	1,011	1,011	1,011	1,011		1,011
All-cause Non-hospitalized pneumonia ¹	1,564	1,564	1,564	1,564	1,564		1,564
-All-cause AOM ¹⁴	9,200	9,200	9,200	9,200	9,200		9,200
Percentage of IPD due to meningitis ¹⁵ (%)	20.00	20.00	20.00	20.00	20.00		20.00
All-cause mortality per 100,000 ¹²	33,404.80	1,134.00	1,143.60	1,164.00	1,174.80		7,682.90
Case fatality rates (%)							
Meningitis ¹⁶	34.00	34.00	34.00	34.00	34.00		34.00
Bacteremia ¹⁶	21.00	21.00	21.00	21.00	21.00		21.00
All-cause Hospitalized pneumonia ^{17,18}	17.20	17.20	17.20	17.20	17.20		19.30
	Female			Male			
Baseline utility ¹⁹	0.99				0.94		
	Meningitis	Bacteremia	Hospitalised pneumonia	Non-hospitalised pneumonia			ΑΟΜ
Direct medical cost per disease episode (INR)	276,201	230,156	339,025		6,650		2,300
Disutility ²⁰⁻²³	0.023	0.008	0.006		0.004		0.005

Table 4. Scenario analysis results for VE.

Scenario	Outcomes	PCV10-SII	PCV14-BioE	PCV13-Pfizer
	Total QALY	1,313,349,729	1,313,361,655	1,313,871,312
VE for PCV10-SII and	Total cost	610,387,678,499	624,960,409,344	620,614,863,400
PCV14-BioE: estimation		19,608		
based on OPA GMTs	ICER	(Cost Effective)	PCV13 Dominant	Ref

Abbreviations: GMT, geometric mean titer; OPA, opsonophagocytic assay; PCV, pneumococcal conjugate vaccine; QALY, quality-adjusted life year; Ref, reference; VE, vaccine effect

Abbreviations: IPD, invasive pneumococcal disease; PCV, pneumococcal conjugate vaccine; QALY, quality-adjusted life year; PCV13, PCV13-Pfizer

Figure 2. Deterministic sensitivity analysis (DSA) results. A. DSA costs results; B. DSA QALY results.

CONCLUSIONS

Vaccinating children in India with PCV13-Pfzier could prevent more PD cases and save

Table 2. Vaccine effect estimates post primary doses and post booster dose.

	PCV13-Pfizer/PCV10- GSK 3+1 Dose		Base Case (based on IgG GMC)		Scenario analysis (based on OPA GMT)		
			PCV10-SII	PCV14-BioE	PCV10-SII	PCV14-BioE	
Vaccine effect (%)	Post-	Post booster	Post-Primary	Post-Primary	Post-Primary Dose	Post-Primary	
	primary*	dose	Dose (3+0)	Dose (3+0)	(3+0)	Dose (3+0)	
IPD ⁶	67.1	88.7	37.3	47.5	47.6	55.8	
All-cause Outpatient							
Pneumonia ⁹	19.3	25.5	10.7	13.6	13.7	16.0	
All-cause Inpatient							
Pneumonia ⁷	4.5	6.0	2.5	3.2	3.2	3.8	
All-Cause AOM ⁸	5.9	7.8	3.3	4.2	4.2	4.9	

Abbreviations: AOM, acute otitis media; GMC, geometric mean concentration; GMT, geometric mean titer; IgG, immunoglobulin G; INR, Indian Rupees; IPD, invasive pneumococcal disease; mo, months; OPA, opsonophagocytic assay; PCV, pneumococcal conjugate vaccine; y, years

more PD-associated medical costs than PCV10 and PCV14-BioE vaccines over 10 years. From the Indian private market perspective, PCV13-Pfizer was cost-effective compared with the two 10-valent PCVs and dominant over PCV14-BioE.

References: 1. Reyburn et al. J Glob Health 2023;13:05002; 2. Wahl et al. Lancet Glob Health 2018;6(7):e744-e57; 3. Huang et al. ISPPD 2024. Cape Town; (2024); 4. Wahl et al. The Lancet Global Health 2019;7(6):e735-e47; 5. GlobalData Healthcare (2021). https://www.clinicaltrialsarena.com/comment/india-pcv13-vaccine/?cf-view (accessed 16 August 2024); 6. Savulescu et al. Vaccine 2022;40(29):3963-74; 7. Hansen et al. Pediatr Infect Dis J 2006;25(9):779-81; 8. Black et al. Pediatr Infect Dis J 2000;19(3):187-95; 9. Black et al. Pediatr Infect Dis J 2002;21(9):810-5; 10. Pfizer Inc. Data on File. 2024; (Unpublished); 11. World Population Review. India Population (2024). https://worldpopulationreview.com/countries/india-population (accessed 15 August 2024); 12. Office of the Registrar General & Census Commissioner India. SAMPLE REGISTRATION SYSTEM (SRS)-ABRIDGED LIFE TABLES 2016-2020. (2022); 13. Nisarga et al. Indian Pediatr 2015;52(3):205-11; 14. DeAntonio et al. Int J Pediatr Otorhinolaryngol 2016;85:65-74; 15. Ghia et al. Infect Dis Ther 2021;10(4):2271-88; 16. Thomas et al. Lancet 1999;353(9160):1216-21; 17. Jayaraman et al. J Microbiol Immunol Infect 2019;52(5):736-42; 18. Rudan et al. J Glob Health 2013;3(1):010101; 19. Jyani et al. J Glob Health 2023;13:04018; 20. Rozenbaum et al. Pediatrics 2013;132(2):e324-32; 21. Stoecker et al. Pediatrics 2013;132(2):e324-32; 22. Melegaro et al. Vaccine 2004;22(31-32):4203-14; 23. Mangen et al. Eur Respir J 2015;46(5):1407-16.

Acknowledgements: Medical writing assistance was provided by Visible Analytics Ltd, funded by Pfizer. **Disclosures:** This study was funded by Pfizer. SSR, RR and SS are employees of Pfizer Ltd.,

India. WW and LH are employees of Pfizer Inc.

For more information please contact:

Liping Huang, MD MSc Email: liping.huang@pfizer.com www.pfizer.com

Presented at ISPOR EU; 17-20 November 2024; Barcelona, Spain