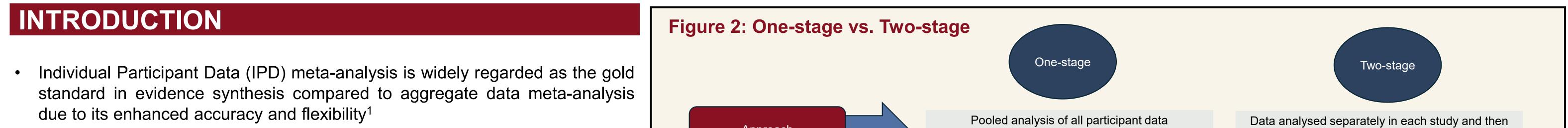
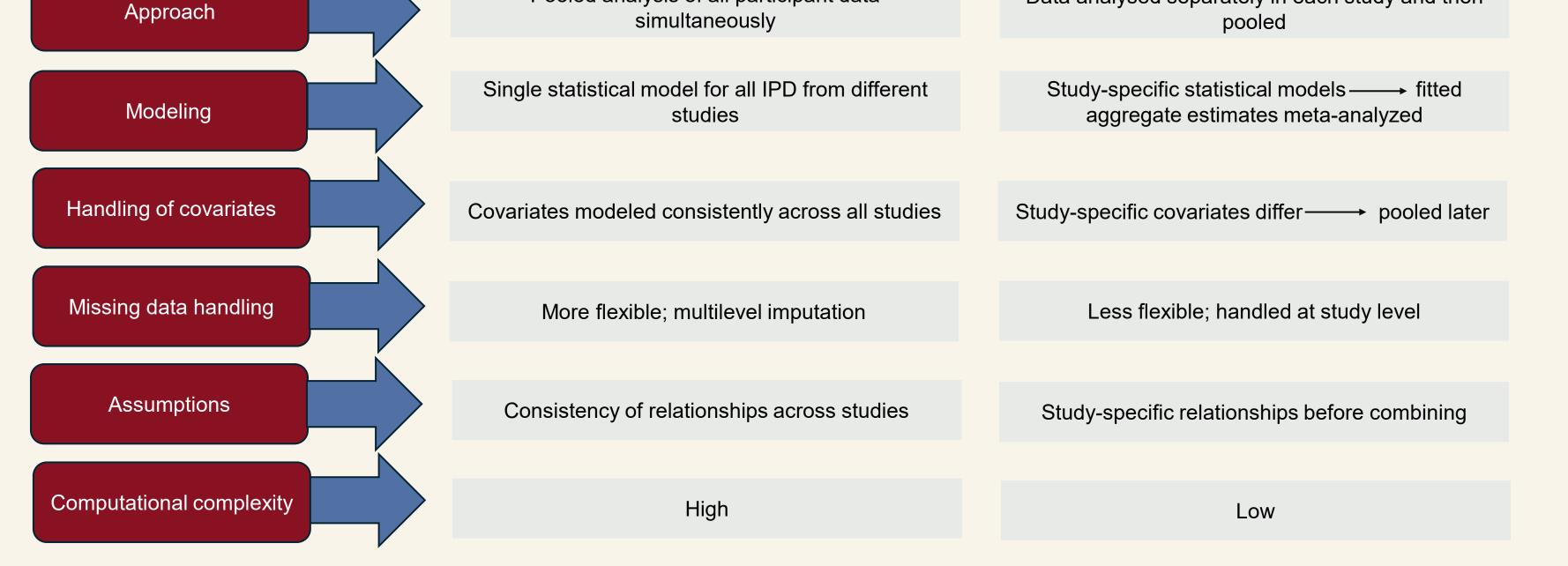
Individual Participant Data Meta-Analysis for Time to Event Outcomes: One-Stage or Two-Stage Method?

Anandaroop Dasgupta¹, Ankita Kaushik ¹, Barinder Singh², Akanksha Sharma³, Gianluca Baio⁴ ¹Gilead Sciences, Inc., Foster City, CA, USA, ²Pharmacoevidence, London, UK, ³Pharmacoevidence, SAS Nagar Mohali, India, ⁴University College London, London, UK

CONCLUSIONS


- The one-stage and two-stage models used in this Individual Participant Data (IPD) meta-analysis effectively captured and validated treatment effects
- For a nuanced analysis, the one-stage approach is preferable for IPD metaanalyses of fewer studies. In contrast, the two-stage approach is better for meta-analyses with large number of studies in the presence of heterogeneity
- Where possible, both one-stage and two-stage approaches should be used to leverage their complementary strengths for time-to-event analysis

PLAIN LANGUAGE SUMMARY


- One-stage approach analyzes all participant data in a single unified statistical model, best for fewer trials
- Two-stage approach assesses each study separately using descriptive analysis, then combines results, ideal for meta-analyses of large number of studies with heterogeneity

CO127

- The intervention showed statistically significant improvements in all the outcomes including overall survival, progression-free survival, and time to deterioration compared to the comparator
- Both methods produced consistent results, confirming their effectiveness and robustness in estimating treatment effects

- Unlike traditional aggregate data meta-analyses, IPD meta-analysis utilizes raw, individual-level data from multiple studies, allowing for precise estimation of treatment effects and subgroup analyses²
- Despite numerous comparisons, there is still some uncertainty regarding when to employ the one-stage versus the two-stage approach in IPD metaanalysis³
- The meta-analysis conducted using IPD involves mainly two methods including one-stage and two-stage
- A one-stage IPD meta-analysis involves pooling and evaluating patient-level data from multiple clinical trials, whereas the two-stage IPD meta-analysis is typically employed when the individual-level data from multiple studies are analyzed separately in each study, and then combined in a second stage to generate an overall estimate^{2,4}

OBJECTIVE

 The current study compares one and two-stage IPD meta-analysis methods to assess the effectiveness of treatments on time-to-event (TTE) outcomes

METHODS

 This study utilized one-stage and two-stage meta-analysis techniques to process IPD from phase 3 trials in metastatic breast cancer, evaluating overall survival (OS), progression-free survival (PFS), and time-todeterioration (TTD) on European Organization for Research and Treatment of

RESULTS

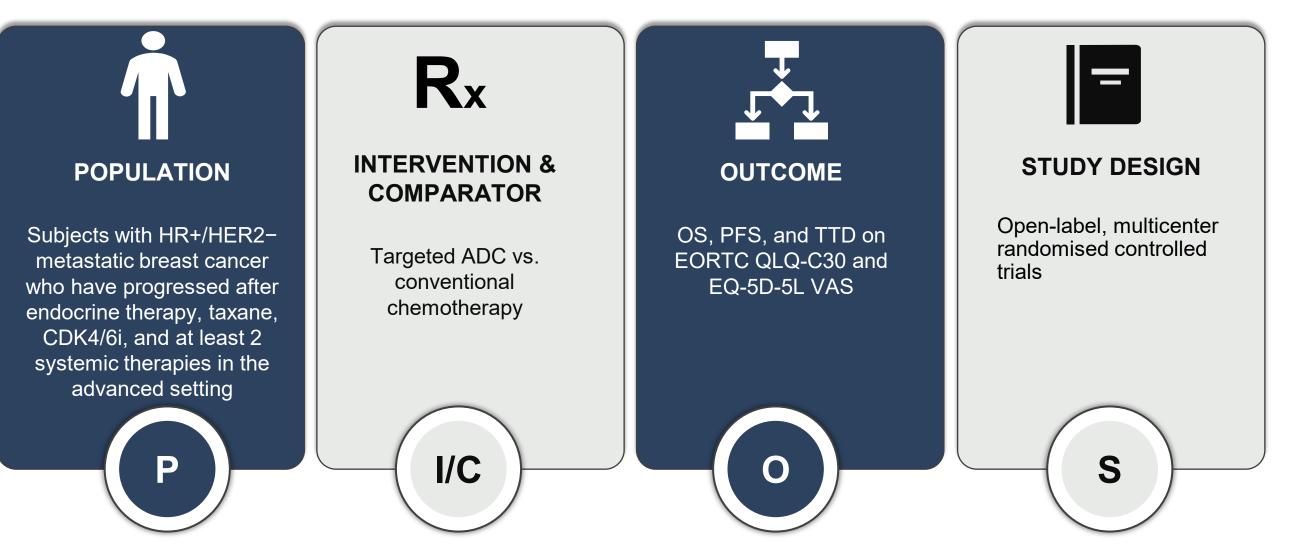

- Both one-stage and two-stage models consistently estimated treatment effects on OS and PFS, favoring the intervention (Figure 3)
- Similar findings were also reported for TTD on EORTC QLQ-C30 and EQ-5D scale after including death (death as event), which favored the intervention versus the comparator (Figure 4)
- The one-stage IPD meta-analysis was chosen as the base-case due to the limited number of studies in the analysis
- The alignment of both models, directionally and statistically, highlighted the reliability and robustness of the estimates

Figure 3 : One-stage and two-stage results for (a) Overall survival with intervention vs. comparator

Cancer Quality of Life Questionnaire Version 3.0 (EORTC QLQ-C30) and EuroQol 5 Dimensions (EQ-5D) instruments

• Figure 1 depicts the pre-defined eligibility criteria for the meta-analysis

Figure 1 : PICOS criteria for inclusion in the meta-analysis

ADC: Antibody-drug conjugate; CDK4/6i: CDK4/6 inhibitor; EORTC QLQ-C30: European Organization for Research and Treatment of Cancer Quality of Life Questionnaire Version 3.0; EQ-5D-5L VAS: EuroQol Five Dimensions Five Levels Visual Analogue Scale; HER2-: Human epidermal growth factor receptor 2 negative; HR+: Hormone receptor-positive; OS: Overall survival; PFS: Progression-free survival; TTD: Time to deterioration

- Hazard ratios and 95% confidence interval (CI) were estimated for survival and TTE outcomes using a stratified Cox proportional hazards regression analysis
- TTD assessment was performed in the EORTC QLQ-C30 and EQ-5D-5L evaluable population, which was defined as intention-to-treat (ITT) subjects who completed at least one domain/dimension at baseline and had at least

(b) Progression-free survival with intervention vs. comparator

Model	(a) OS	HR (95% CI)	p-value	Model	(b) PFS	HR (95% CI)	p-value
One-stage —		0.66 (0.55, 0.80)	<0.001	One-stage —		0.62 (0.50, 0.77)	<0.001
Two-stage —	_	0.70 (0.58, 0.86)	<0.001	Two-stage —		0.67 (0.55, 0.83)	<0.001
0.5 Statistically significantly better effi	1 cacy with intervention	1.5 n vs comparator		0.5	1	1.5	

CI: Confidence interval; HR: Hazard ratio; OS: Overall survival; PFS: Progression-free survival

Figure 4: Results for TTD outcomes on EORTC-QLQ-C30^{*} and EQ-5D-5L VAS^{**} scale: (a) One-stage

(b) Two-stage

(b) Iwo-stage	(a) One-stage		(b) Two-sta	qe	p-value
Domains	(a) One-stage	HR (95% CI) p-value	Domains	HR (95% CI) p	
Global Health Status / Qo		0.83 (0.71, 0.97) 0.021	GHS/QoL	0.83 (0.69, 0.98) <	<0.01
Physical Functioning	_	0.77 (0.66, 0.90) <0.01	Physical Functioning	0.82 (0.65, 0.99) <	<0.01
Role Functioning		0.90 (0.77, 1.05) 0.200	Role Functioning	0.93 (0.77, 1.09)	0.452
Emotional Functioning	_	0.75 (0.64, 0.89) <0.01	Emotional Functioning	0.71 (0.55, 0.87) <	<0.01
Cognitive Functioning		0.86 (0.73, 1.00) 0.055	Cognitive Functioning	0.82 (0.68, 0.96) <	<0.01
Social Functioning		0.89 (0.76, 1.05) 0.160	Social Functioning	0.91 (0.71, 1.11)	0.815
Fatigue	_	0.83 (0.71, 0.97) 0.019	Fatigue —	0.81 (0.66, 0.95) <	<0.01
Nausea and Vomiting	→	1.21 (1.03, 1.41) 0.018	Nausea and Vomiting	1.28 (1.05, 1.51) <	<0.01
Pain		0.90 (0.77, 1.06) 0.199	Pain	0.98 (0.78, 1.18)	0.841
Dyspnea	•	0.74 (0.63, 0.87) <0.01	Dyspnea —	0.75 (0.61, 0.90) <	<0.01
Insomnia		0.87 (0.73, 1.02) 0.088	Insomnia	0.79 (0.62, 0.97) <	<0.01
Appetite Loss		1.07 (0.91, 1.25) 0.439	Appetite Loss	1.01 (0.82, 1.20)	0.864
Constipation		1.03 (0.88, 1.22) 0.681	Constipation	1.07 (0.81, 1.33)	0.597
Diarrhea		•	Diarrhea	1.50 (1.23, 1.77)	<0.01
Financial Difficulties		0.83 (0.70, 0.99) 0.035	Financial Difficulties	0.81 (0.61, 1.02)	0.097
Summary score		0.92 (0.79, 1.08) 0.325	Summary score	0.92 (0.76, 1.07)	0.330
EQ-5D-5L VAS		0.76 (0.59, 0.94) 0.012	EQ-5D-5L VAS	0.75 (0.61, 0.88)	<0.01
	0.5 1	1.5	0.5 1	1.5	

Statistically significant extension in TTD associated with intervention vs comparator

CI: Confidence Interval; QoL: Quality of Life; EORTC QLQ-C30: European Organization for Research and Treatment of Cancer Quality of Life Questionnaire Version 3.0; EQ-5D-5L VAS: EuroQol Five Dimensions Five Levels Visual Analogue Scale; TTD: Time to Deterioration

*The 30-item EORTC QLQ-C30 questionnaire consisted of 5 functional scales (physical, role, cognitive, emotional, and social functioning), 3 symptom scales (fatigue, pain, nausea, and vomiting), a global health status/QOL scale (GHS/QoL), and 6 single items (dyspnea, appetite loss, sleep disturbance, constipation, diarrhea, and financial difficulties). A summary score for the EORTC QLQ-C30 is also calculated as the

one evaluable assessment post-baseline

- The one-stage meta-analysis pooled IPD data from two studies into a single unified statistical model, adjusting for clinically and statistically relevant covariates
- The two-stage IPD meta-analysis analyzed each study separately with relevant covariates and then pooled the summarized results
- Figure 2 demonstrates the major differences between one-stage and twostage model in terms of approach, modeling, covariate and missing data handling, assumptions and computational complexity

EQ-5D** measure includes an EQ-5D-5L scale and a visual analog scale (VAS)⁴

LIMITATIONS

- Both methods depend on the availability of individual participant data from the contributing studies, which can be challenging due to data security concerns, proprietary issues, or incomplete datasets
- Both approaches are vulnerable to publication bias if the studies included in the meta-analysis are not representative of all relevant research, such as if only studies with favorable results are published
- The findings from both one-stage and two-stage methods may be less generalizable to broader populations if the included studies focus on narrow or highly selected patient groups

References

Stewart LA, et al. *Eval Health Prof.* 2002; 25(1), 76-97
Riley RD, et al. *BMJ.* 2010; 340, c221
Debray TP, et al. *Res Synth Methods.* 2013; 4(3), 169-188
Tierney JF, et al. *PLoS Med.* 2015; 12: e1001855

Acknowledgements

We extend our thanks to the patients, their families, and all participating investigators. This study was funded by Gilead Sciences, Inc. Editing and production assistance were provided by Pharmacoevidence

Disclosures

BS and AS are employees of Pharmacoevidence, AD and AK are employees of Gilead Sciences, Inc. and GB is an employee of University College London