Empowering Systematic Literature Reviews: Utilizing Generative Al for MSR140
Comprehensive Literature Screening From Titles and Abstracts to Full-Text
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CONCLUSION

Large Language Models (LLM) and generative Al can potentially improve the Systematic Literature Review (SLR) process by increasing the efficiency and optimizing the resources.
Integrating Claude 3.5 Sonnet in a generative Al interface demonstrated high performance and efficiency in automating the SLR process. Its seamless full-text interaction handling and
consistent efficiency across both screening stages significantly accelerated and streamlined SLRs, yielding substantial time savings over traditional manual methods.

INTRODUCTION Figure 1: SLR automation workflow diagram
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« SLRs provide a comprehensive analysis of the research, which is essential
for producing robust evidence, directing healthcare decisions, and impacting
policymaking-specific issues
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OBJECTIVE

 Recent advancements in generative Al are transforming literature reviews by E—
automating and expediting literature screening.

 This study aims to develop and evaluate an automated system that utilizes
advanced language models and embedding techniques for rapid and accurate
literature screening using title, abstract and full text data
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Figure 2: systematic representation of SLR Automation with GenAl
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« A data sheet containing relevant details (titles, abstracts, etc.) extracted from document emuded,mcluded S
the literature database was uploaded into the interface with reasons. (performed by SME)
« Data sheet along with inclusion and exclusion criteria and optimized prompt ,
was given as input to the LLM model for the review process? S
« The prompt template provided clear and concise instructions to the LLM

models for the initial screening. The LLM model processes the data in the p1 Migrate Metauata Pars-ng Invoke P2 Al Agent
datasheet row by row according to the inclusion and exclusion criteria and Migrate & bindPicO&Phase | O1 ) N/ N\ oo Invoke Al Agent (internally

provides the decision according to the inclusion and exclusion criteria for the 1 Literautres (Title & Abstract) o e trevl)

|n|t|al Screening to relational database.

* Articles with a different decision between the human expert reviewer and Al
reviewer were flagged as conflicts

* A highly experienced subject matter expert (SME) critically analysed the RESULTS

variations in the decisions made by both human experts and Al reviewers and

provide_d the final decisi(_)n for_articles flagged as a conflict . The various performance metrics (accuracy, ° Together, screenings across both stages
* The arjucles marked for inclusion are passed to the next phase for the full-text sensitivity, specificity, and precision) were used to resulted in saving apP,rOXimately 40%. of

analysis evaluate the performance of the interface? hours compared to traditional human review

processes, despite the small sample size
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* In this phase, the full texts of the included articles were either automatically Sensitivity = TPZPFN Eq.(2) Figure 3: Model Confusion Matrix

retrieved or manually uploaded for the detailed screening process. Full text e .. _ TN

. . . . Specificity = Eq.(3) . .

was analyzed as per the inclusion and exclusion criteria TN+FP Confusion Matrix: GPT-4
* Full-text articles were pre-processed and chunked into smaller, manageable Precision = e Eq.(4) SME Decision

sections to create a Retrieval-Augmented Generation (RAG) pipeline, as e e

shown in Figure 2  The first-stage screening of the publications,
 Embeddings were stored in a PostgreSQL vector database that captures the using title and abstracts, was conducted by the

semantic meaning of the text both human reviewer and Claude 3.5 Sonnet 8 27 14
 Metadata was stored alongside the embeddings for efficient indexing and fast - The generative Al demonstrated an outstanding £

retrieval performance achieving an accuracy rate of _
 An agent was developed to analyze the full text and retrieve the relevant 96.72%, a sensitivity rate of 90.00%, and a 3

chunks as per the inclusion and exclusion criteria. specificity of 97.13% as shown in Figure 3. a
* This agent used advanced natural language processing techniques to find the  In subsequent steps, the Al interface effectively =

relevant chunks as per the criteria and to give the final decision as included interacted with the full texts §

or excluded  The model utilized full texts against the eligibility o 3
« Similar to Phase-1, SME resolves the conflict between the decision of the criteria and achieved screening efficiency

human expert reviewer and the Al reviewer. comparable to that of the first stage
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