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External validation of survival estimates
• To assess the clinical plausibility of our patient-level simulation based long-term survival estimation, we compared our results with estimates of long-term survival 

observed in clinical and observational studies and estimates based on standard survival extrapolations models done independently of lung function 
• Khor et al15 provided a systematic review of IPF prognosis, including mortality, based on both clinical trials and observational studies. Limitations of the study 

include reporting survival in time intervals instead of specific timepoints and including older (before 2000) studies
• Lancaster et al17 presented long-term survival extrapolations for nintedanib and placebo (representing best supportive care [BSC]) based on pooled analysis  

of 6 clinical trials

Results 
Model-predicted survival estimates
• The predicted 2-, 5-, and 10-year survival rates were 49%-86%, 14%-62%, and 1%-31%, respectively, with the highest survival estimates produced by the longitudinal 

GAP point index model and the lowest by the du Bois et al model (Figure 2)
• In addition to variations in survival estimations across models, our results also showed that the implementation approach of the longitudinal GAP model  

(point index vs categorical hazard ratios) resulted in considerable differences in long-term survival estimates, whereas the different implementation approach  
of the GAP model (calculator vs point index) had little impact 

External validation of predicted survival estimates
• All models, apart from du Bois et al10, pass through the Khor et al15 pooled 2- to 5-year survival estimate (0.62; 95% confidence interval, 0.58-0.66) during this  

time period
• Despite du Bois et al10 being below the 2-5-year estimate, it is still within the range of estimates from the studies informing the Khor et al15 analysis 
• The patient-level simulation survival estimates generally lie between the BSC exponential and Weibull extrapolations presented by Lancaster et al,17 with 

2 exceptions. The du Bois et al model10 produced lower survival estimates, particularly in the first 5 years, and the point index version of the longitudinal  
GAP model produced higher survival estimates, also primarily in the first 5 years
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Conclusions 
• Patient-level simulation informed by disease progression trajectories 

and mortality risk prediction models is a viable approach for predicting 
long-term survival in IPF 

• Further investigation and validation of long-term disease progression 
and mortality risk predictions are needed to increase the confidence in 
this modeling approach for use in health technology assessments
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Background
• Idiopathic pulmonary fibrosis (IPF) is a chronic, progressive, and debilitating 

disease that causes irreversible loss of lung function, significantly impacting 
patients’ quality of life and life expectancy1-3 

• When assessing the efficacy of new potential treatments for IPF in clinical 
trials, primary outcomes are centered on reducing or halting the progressive 
decline of lung function4,5

 — Lung function is commonly measured in terms of forced vital capacity 
(FVC) and diffusing capacity of the lungs for carbon monoxide (DLCO)

• Clinical trials for new IPF treatments are generally not designed (by virtue  
of statistical power or follow-up duration) to establish the potential impact 
of treatments on overall survival6

 — Hence, survival extrapolation beyond the trial period is needed to 
evaluate both long-term effectiveness and cost-effectiveness of 
treatments for IPF

• A review of health technology assessments of IPF treatments found that 
prior state transition models were limited because overall survival was 
extrapolated independently of lung function7

• Although published mortality prediction models for IPF have linked age,  
sex, lung function, and recent respiratory hospitalizations to survival,8-10  
the feasibility of using these mortality prediction models in long-term 
disease and cost-effectiveness models has not been established

Objective 
• This study assessed the feasibility of modeling long-term survival in IPF using 

a patient-level simulation based on IPF-specific mortality risk prediction 
models

Methods 
Modeling disease trajectories
• We developed a patient-level simulation model to predict the natural history 

disease trajectories without antifibrotic treatment for patients with IPF 
• The model predicts patient-level disease trajectories for key clinical 

parameters needed to predict mortality risk, including percent predicted 
forced vital capacity (ppFVC), percent predicted diffusing capacity of the 
lungs for carbon monoxide (ppDLCO), 6-minute walk distance (6MWD), and 
history of recent respiratory hospitalization

• A targeted literature review was conducted to identify 3 categories of inputs 
needed to model long-term patient-level disease trajectories11: baseline 
characteristics, natural disease progression, and correlation between 
progression in clinical parameters (Table 1)

• Trajectories for each clinical parameter were estimated for each patient at 
6-month steps over a lifetime time horizon

• The model was run for a simulated cohort of 1000 patients, using random 
numbers to draw from appropriate distributions defined by the mean and 
standard deviation (SD) for each input parameter. Continuous variables were 
sampled from normal distributions, applying correlations as appropriate,  
and proportions were sampled from binomial distributions

• This approach to simulating individual patient trajectories was designed to 
realistically capture the natural heterogeneity observed in clinical practice

Estimating mortality
• Mortality was estimated from patients’ disease trajectories using 3 different 

clinically relevant mortality risk prediction models: GAP,8 longitudinal GAP,9 
and du Bois et al10

• The different clinical variables used when predicting mortality risk with each 
model are described in Figure 1

• At each 6-month interval, patient-level mortality probabilities were 
estimated from the patient- and time-specific clinical parameters relevant 
for each mortality risk prediction model. Annual mortality probabilities were 
adjusted to reflect the model’s 6-month step and used to determine the 
probability of a patient dying within a given 6-month step

Discussion 
• A key strength of our patient-level simulation approach is the ability 

to explicitly model survival based on clinical inputs and IPF disease 
trajectories. Our results suggest that this approach predicts clinically 
plausible survival estimates when compared with survival estimates from 
published observational studies and clinical trial extrapolations 

• Further research is needed to assess and understand the variation in 
survival estimates across IPF mortality risk prediction models. Differences in 
predictions across models are especially sensitive to baseline characteristics 
and disease progression in those parameters included in some models 
(eg, 6MWD)

• A challenge to the patient-level simulation approach is the need for data 
informing disease progression and the correlation among parameters that 
inform the risk prediction models, especially for a rare disease like IPF. We 
were able to inform most parameters from a targeted literature review,11 but 
further validation is needed on estimates of correlations between disease 
trajectories, ppFVC change (often unclear if estimates relate to absolute or 
relative decline), and whether estimates of disease progression are constant 
over time

• A further limitation is that the IPF mortality risk prediction models were 
developed as clinical support tools to inform short-term mortality risk 
predictions. Further work is needed to assess the applicability of these 
models for repeated and long-term mortality risk predictions in  
cost-effectiveness modeling applications

Table 1. Input categories used to model long-term patient-level disease 
trajectory

Baseline characteristics
Parameter 

values References

Age, mean (SD), years 66.0 (7.6) 10

Gender, proportion
Female
Male

0.285
0.715

10

Proportion of patients with history of acute exacerbation 0.208 12

Baseline ppFVC
ppFVC range for inclusiona

Minimum ppFVC value
Maximum ppFVC value

History of acute exacerbation, mean (SD)
No history of acute exacerbation, mean (SD)

40
120

72.0 (15.7)
77.6 (17.0)

12
12

Baseline ppDLCO
ppDLCO, mean (SD)
Correlation coefficient (baseline ppDLCO and ppFVC)
Parameters for those unable to perform the DLCO testb

ppDLCO cutoff value (inclusive)
Proportion unable to perform DLCO test at cutoff

47.5 (9.2)
0.38

10.0
0.500

10
4

8, 13, 14

Baseline 6MWD
6MWD, mean (SD), meters
Correlation coefficient (baseline 6MWD and baseline ppFVC)

379.0 (107.0)
0.12

10
4

Natural disease progression and correlation between variables
Parameter 

values References

Change in ppFVC
ppFVC change, per 6 months, mean (SD)c −3.38 (6.76) 15

Probability of acute exacerbation resulting in hospitalizationd

ppFVC decline over 6 months
< 5%
≥ 5% and < 10%
≥ 10%

0.005
0.020
0.058

16

Change in ppDLCO
ppDLCO change, per 6 months, mean (SD)e

Correlation coefficient (change in ppDLCO and change in ppFVC)
−1.67 (6.66)

0.29
15
4

Change in 6MWD
6MWD change, per 6 months, mean (SD),f meters
Correlation coefficient (change in 6MWD and change in ppFVC)

−18.5 (74.0)
0.22

15
4

aValues based on assumptions. bAssumption based on references 8, 13, and 14. cChange in ppFVC is relative for the GAP and 
longitudinal GAP models, and absolute for the du Bois et al model,10 with mean based on reference 15 and SD based on assumption. 
dDerived from reference 16. eChange in ppDLCO is relative for GAP and longitudinal GAP models and absolute for the du Bois et al 
model,10 with mean based on reference 15 and SD based on assumption. fMean is derived from reference 15 and SD based on 
assumption.
GAP, gender-age-physiology.

Pr
op

or
ti

on
 s

ur
vi

vi
ng

 (
%

)

100

90

80

70

60

50

40

30

20

10

0
0 5 10 15 20 25 30

GAP, calculator version
Longitudinal GAP, categorical version
Lancaster et al, BSC, exponential
du Bois et al

GAP, index version
Longitudinal GAP, point index version
Lancaster et al, BSC, Weibull

Years

Figure 2. Long-term survival predictions 
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Figure 1. Characteristics of IPF mortality prediction models

a24-week change in ppFVC is relative for the longitudinal GAP model9 and is absolute for the du Bois et al model.4

Model Description

Mortality 
prediction 
timepoints

GAP8

(calculator and 
index versions)

Validated; uses 
commonly 
measured clinical 
baseline variables

1-year, 2-year, 
and 3-year risks

Longitudinal GAP9

(point index 
and categorical 
versions)

Includes GAP 
model baseline 
variables plus 
2 longitudinal 
variables

1-year and 
2-year risks

du Bois et al10 Includes baseline 
and longitudinal 
variables

1-year risks
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