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INTRODUCTION Figure 1: RMSE values for NLCD data

« Missing data on costs, health related outcomes and confounding variables may introduce bias In
economic evaluation and real-world evidence (RWE) generation, which may misguide to take
wrong policy decision.1,2,3]

« Machine learning-based imputation methods typically use modelling to extract valuable information
from incomplete data, enabling reasonable inference of missing values. The general approach of
the machine learning algorithms applied in this study involves using complete samples within the
Incomplete dataset as the training set to build a predictive model, which then estimates the missing
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values based on the trained model [4]. While machine learning (ML) algorithms offer solutions, they
often require large, high-quality datasets, which may not always be available.
 Markov Chain Monte Carlo (MCMC) imputation also exists to handle missing data. [5,6] ML
technigues predict missing values based on patterns in the observed data to achieve optimal
accuracy, while MCMC imputation generates multiple plausible datasets by sampling from the

posterior distributions, capturing uncertainty in the imputed values. Even though MCMC is a widely
used and robust method, it can be computationally intensive with large datasets, and convergence MCMC MCMC MCMC MCMC MCMC
ISsues may arise due to poor mixing and high autocorrelation between samples. MCMC methods (seed 1) (seed 2) (seed 3) (seed 4) (seed 5)
may struggle with high-dimensional data due to the curse of dimensionality. As the number of
parameters in the model increases, it becomes harder to explore the posterior distribution
effectively.[7,8]

RMSE

Imputation methods

« We proposed a novel imputation approach using spline models, known for their flexibility In
capturing complex, non-linear relationships, and compare their performance with established
methods.

OBJECTIVES

Figure 2: RMSE values for VACD data

 To evaluate the performance of standard MCMC and various machine learning algorithms in
comparison to a proposed spline-based imputation method.

METHODS

Data preparation:

« Two publicly available datasets were selected for illustrative purposes.

* In the first example, data on the ages of 228 patients were extracted from the North Central
Cancer Treatment Group (NCCTG) database (NLCD) [9].

* For the second illustration, data on the duration from diagnosis to randomization (DR), measured

RMSE

In months, was selected for 137 patients from the Veterans' Administration Lung Cancer Study GBM  MCMC  MCMC MCMC  RSM  MCMC MCMC
(VACD) [10]. These datasets were chosen to demonstrate the application of imputation (seed 1) (seed 2) (seed 3) (seed 4) (seed 5)
techniques across different patient characteristics.

« We created missing value datasets (MVD) by randomly removing 30% of the observations Imputation Methods

from the primary datasets. Little's (1988) test demonstrated that the data is missing completely at
random (MCAR).

ML imputation procedure:

« MCMC (RMSE: 11.1 to 12.6): Exhibits significantly higher RMSE values, suggesting it is less effective Iin

The remaining 70% of the data was used to train various imputation models, including random this context. The wide range indicates variability in results depending on the random seed used.

forest (RF), decision tree (DT), support vector machine (SVM), gradient boosting model (GBM),
and linear regression (LR). « Other Models (RF, DT, LR, SVM, GBM): All fall within a narrow range (8.5 to 8.9), showing similar

« For the NLCD dataset, the independent variables included sex, performance score, Karnofsky predictive performance but still inferior to NSM. [Figure 1]

performance score, patient-rated Karnofsky performance score (where 100 indicates a good VACD Dataset Observations:

score), calories consumed at meals, and weight loss over the last six months (in pounds). In the « NSM (RMSE: 4.5): Demonstrates superior accuracy with the lowest RMSE.
VACD dataset, the independent variables comprised the Karnofsky performance score (where _ . L L .
100 indicates a good score), prior therapy indicator, and age. These variables were selected to RSM (RMSE: 5.3): Higher than NSM, indicating less precision in predictions.

enhance the predictive power of the imputation models by leveraging relevant patient « MCMC (RMSE: 4.8 to 5.6): Performs reasonably well but not as effectively as NSM, with results also
characteristics. varying based on seed selection. . [Figure 2]
MCMC imputation procedure: « Other Models (RF, DT, LR, SVM, GBM): Show RMSE values ranging from 4.6 to 5.1, suggesting they are

« The MCMC imputation method was used on MVD to create five different datasets by randomly more comparable in this dataset than in NLCD, yet all are less effective than NSM.

selecting five different seeds. NSM's consistent lowest RMSE across both datasets underscores its effectiveness as a missing value
Imputation approach. The MCMC model exhibits notable variability in its RMSE values, indicating its
sensitivity to random seed choices. This variability could affect the reliability of its predictions as well as
affecting the quality of missing value imputation.

 We replaced each missing value with the mean of one hundred samples drawn from the posterior
distribution.

Spline imputation procedure:

CONCLUSIONS

Both natural spline models (NSM) and regression spline models (RSM) were methods used on the
remaining 70% of the data to model relationships between independent and dependent variables
with greater flexibility. Here’s a breakdown of each and why NSM was chosen with hyperparameter
tuning:

In conclusion, the results indicate that spline models outperform other methods in terms of RMSE,
highlighting their potential as a viable alternative for data modelling. Their ability to effectively capture
complex, nonlinear relationships without overfitting makes them a strong choice for various applications.
1. Regression Spline Models (RSM) This analysis supports the adoption of spline models for improved predictive accuracy in practical settings.

« RSM divides data into segments and fits a polynomial function to each segment, connecting
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