

School of Public Health

Impact of COVID-19 on Healthcare Utilization and Costs: A Detailed Analysis from Inpatient and Outpatient Perspectives

Steinmann M¹, Gruhn S¹, Jahn B², Kuhlmann A^{3,4}, Lange B^{5,6}, Greiner W¹

¹ Department for Health Economics and Health Care Management, Bielefeld University, Bielefeld, Germany. ² Institute of Public Health, Medical Decision Making and Health Technology Assessment, Department of Public Health, Health Services Research and Health Technology Assessment, UMIT TIROL – University for Health Sciences and Technology, Hall i.T., Austria. ³ Faculty of Medicine, Martin Luther University Halle-Wittenberg, Germany. ⁴ German Center for Lung Research (DZL), Biomedical Research in End-Stage and Obstructive Lung Disease Hannover (BREATH), Hannover, Germany. ⁵ Department for Epidemiology, Helmholtz Centre for Infection Research, Braunschweig, Germany und German Center for Infection Research (DZIF). ⁶ Translational Infrastructure Bioresources, Biodata and Digital Health, Braunschweig, Germany.

Background and Objectives

. COVID-19 pandemic burdened healthcare systems and econo-

	2020		2021		2022		2023	
	COVID	Non- COVID	COVID	Non- COVID	COVID	Non- COVID	COVID	Non- COVID
Age – Years Mean (SD)	47.3 (21.9)	47.4 (22.5)	43.6 (22.2)	43.7 (22.9)	43.8 (20.1)	44.1 (20.9)	48.1 (18.5)	48.1 (19.5)
Sex –Female (% Female)	61.01	61.01	57.42	57.42	58.22	58.22	61.55	61.55
LOS – days Mean (SD)	9.8 (9.8)	6.6 (10.2)	10.0 (9.6)	6.8 (11.2)	8.7 (10.7)	7.3 (12.8)	8.9 (9.6)	7.1 (11.8)
LOS ICU – days Mean (SD)	9.3 (8.6)	5.0 (6.4)	10.4 (9.8)	5.0 (7.1)	7.1 (8.0)	4.9 (6.9)	5.8 (5.8)	4.6 (7.5)
In-hospital mortality %	0.63	0.09	0.44	0.07	0.05	0.05	0.06	0.06
Elixhauser– Score	1.55	1.51	1.39	1.36	1.22	1.30	1.55	1.46

mies, highlighting the need for detailed data on healthcare use and costs [1-3]. Such data support economic evaluations and enhance infectious disease models for public health decisions and resource allocation [3].

. We assessed outpatient utilization, hospitalization rates, length of stay, costs, and inpatient mortality in German COVID-19 patients using claims data. Findings are integrated into the German Epidemic Microsimulation System (GEMS), an agent-based model (ABM) that simulates infection dynamics and socio-economic impacts, with a focus on vulnerable groups [4].

Methods

- Data: German statutory health insurance (SHI) claims data, covering ~ 9 million patients (Representative for Germany [5]).
 Study period: January 1st, 2020 to December 31st, 2023.
- . COVID-19 patients identification: ICD code U07.1.
- Matching: Coarsened Exact Matching (CEM) [6] to create COVID
 -19 and non-COVID groups based on Elixhauser Comorbidity In-

Table 1: Sample characteristics after CEM shows comparable groups with and without COVID-19.

- . Outpatient costs for COVID-19 varied in mean from 173.92 € in 2020 to 118.94 € in 2023.
- Inpatient costs for COVID-19 varied in mean from 1,167.55 € in 2020 to 357.61 € in 2023.
- . Inpatient costs of Non-COVID patients remained comparable across all years, however consistently exceed those for COVID-19 patients (see Fig. 2).

Figure 2: Weighted average costs for COVID-19 patients compared to Non-COVID patients stratified by ELXH.

2020	2021	2022	2023		

dex (ELXH) [7], age, gender, federal state, and diagnosis quarter.

Estimation method: Weighted logistic regression adjusted for ICU, LOS, and hospital mortality to examine the relationship between COVID-19, COVID-19 associated costs, outpatient visits and subsequent hospitalizations.

Results

- . High amount of COVID-19 cases during peak infection periods, particularly in early 2022.
- . Significantly higher incidence of outpatient cases than for inpatient cases (see Fig. 1).
- . Weighted avg. costs increases with higher comorbidity burden.

Figure 1: Incidence for COVID-19 patients per 100,000 insured, stratified for outpatient, inpatient and ICU admission.

- . Weighted regression model shows that COVID-19 patients tend to incur higher inpatient costs.
- . Costs increase significantly with ICU admissions, longer hospital stays, higher comorbidity burden and in-hospital mortality.

Conclusion

. COVID-19 pandemic has shown that ABM are invaluable for public health decision-making, as they can simulate complex social interactions and behaviors.

. Accurate healthcare cost data is crucial for assessing the economic impact, guiding resource allocation, and supporting costeffective intervention strategies to manage current and future health crises sustainably.

References: [1] Graves JA, et al. (2021). The Financial Effects and Consequences of COVID-19: A Gathering Storm. JAMA. 326(19):1909–1910. [2] Aristodemou K, et al. (2021). The COVID-19 crisis in the EU: the resilience of healthcare systems, government responses and their socio-economic effects. Eurasian Econ Rev 11, 251–281. [3] Rabarison K, et al. (2015). Economic Evaluation Enhances Public Health Decision Making. Frontiers in Public Health, 3. [4] Ponge J, et al. (2023). Evaluating Parallelization Strategies for Large-Scale Individual-based Infectious Disease Simulations 2023 Winter Simulation Conference (WSC). IEEE, S 1088–1099. [5] Janßen C, et al. (2014): Health care utilization in Germany. Theory, methodology, and results. New York, Heidelberg: Springer. [6] Elkenkamp S, et al. (2022). Potentials of quasi experimental study designs for health economic analyses. Public Health Forum. 30(3): 185–189. [7] van Walraven M et al. (2009). A Modification of the Elixhauser Comorbidity Measures Into a Point System for Hospital Death Using Administrative Data. Medical Care 47(6): p 626-633.

Poster presented at ISPOR Europe, November 18-20 2024, Barcelona, Spain. The project OptimAgent is funded by the Federal Ministry of Education and Resarch (BMBF). Grant number: 031L0299I. For questions regarding this poster, please contact the corresponding author: maren.steinmann@uni-bielefeld.de