
STRENGTHS

 System excelled at extracting simple, well-defined fields (e.g., study 

location, sample size) with consistency rates over 90%

o This demonstrates the system’s robustness when handling standardized 

data that is uniformly reported across scientific studies, suggesting strong 

potential for use in structured data environments

AREAS FOR IMPROVEMENT

 Contextual understanding

o Fields such as "Blinding" and "Study Design" require the system to better 

understand and interpret complex, nuanced information

o Enhancing model's contextual recognition could significantly improve 

accuracy in these more challenging fields

 Handling synonym variations

o Performance could also be improved by refining the system’s ability to 

handle varied phrasing and synonyms

– Particularly in fields such as “Trial Phase“, in which minor wording 

differences impact extraction

 Advanced NLP techniques

o Incorporating more sophisticated NLP models for semantic understanding 

could help the system navigate the complexity of unstructured data

– E.g., variable formats of study design reporting
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 Systematic reviews are essential for evidence-based research as 

synthesized published data can inform clinical practice and policy

 However, manual data extraction from scientific articles is time-

consuming, labor-intensive, and prone to errors, potentially affecting 

review quality1,2

 Advancements in natural language processing (NLP) and artificial 

intelligence (AI), particularly large language models, offer a solution3
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Objective

 To evaluate the performance of a custom-designed 

system utilizing GPT-4o and retrieval-augmented 

generation (RAG) for extracting specific fields from 

scientific journal articles, compared with domain expert 

extraction

SYSTEM DEVELOPMENT

 A system using OpenAI's GPT-4o model4 integrated with RAG 

capabilities was developed to automate the extraction of key data 

fields for both straightforward and nuanced data with accuracy 

comparable to that of domain experts

 System architecture consisted of 2 primary components (Figure 1):

1. Vector Store Implementation for RAG

o Journal articles were parsed, chunked, and embedded into vector stores

2. AI Agent Integration Using OpenAI Assistants

o OpenAI assistant was tailored to perform data extraction tasks

o System leveraged the File Search tool to retrieve and extract relevant data 

from Vector Stores, enabling multi-step, context-aware searches

EVALUATION PROCESS

Study Selection

 To evaluate system performance, 4 unpublished systematic reviews 

including 36 published clinical trials and observational studies 

across diverse medical fields were selected

o Systematic review 1: 10 full-text studies on prognostic value of sentinel 

lymph node biopsy in melanoma (9 cohort studies, 1 cross-sectional study)

o Systematic review 2: 10 full-text studies on humanistic burden of systemic 

lupus (8 cross-sectional studies, 1 cohort study, 1 case-control study)

o Systematic review 3: 8 full-text studies on indicators of symptomatic 

progression in oncology (7 randomized controlled trials [RCTs], 1 post-hoc 

analysis of an RCT)

o Systematic review 4: 8 full-text studies on humanistic burden of kidney 

transplant rejection (5 cross-sectional studies, 2 cohort studies, 1 RCT)

Data Extraction and Analysis

 System tasked with extracting 6 data fields from full-text articles

o Study design, location, setting, sample size, trial phase, blinding

o Fields were chosen to test system’s ability to handle extractions that were 

considered straightforward (information typically explicitly reported in articles; 

e.g., “Location”, “Sample Size”), and those that were complex (varied 

reporting styles and terminologies in articles; e.g., “Study Design”)

Comparative Analysis

 AI-extracted data were compared with those of domain experts by a 

third reviewer to determine if the AI-extracted data were “consistent” 

with domain experts. Two elements were considered:

o Similarity: How closely AI's extractions matched those of experts in terms of 

both content and format

o Completeness: System’s ability to accurately capture all relevant data points 

that domain experts captured

 If both metrics were satisfied, the data field would be considered as 

“consistent” against the expert’s extraction. The overall consistency 

rate was then calculated by using the following formula:

o Consistency Rate = ((Number of Correct Extractions by AI) / 

(Total Number of Extractions of the Same Field by Expert)) × 100

o Consistency was categorized as high (consistency >90%), moderate (75–

90%), or low (<75%)

OVERALL PERFORMANCE

Consistency

 System successfully extracted 168 data points from 36 studies, with 141 

(84%) extractions considered consistent with those of domain experts 

(Figure 2)

 Consistency rate of the system varied across different data types, reflecting 

diversity and complexity of information reported in scientific literature 

(Figures 3 and 4) 

 Performance of the system was categorized into three levels:

1. High Consistency

o Study Location: Extracted 26/28 data points correctly (93% 

consistency)

– High accuracy reflects the consistent way in which study location 

was reported across studies

o Sample Size: Extracted 33/36 data points correctly (92% consistency)

– This data type is often clearly stated, allowing more precise 

extraction

2. Moderate Consistency

o Trial Phase: Extracted 7/8 data points correctly (88% consistency)

– Occasional misidentifications occurred when there were subtle 

differences in the way phases were reported across studies

o Setting: Extracted 31/36 data points correctly (86% consistency)

o Study design: Extracted 30/36 data points correctly (83% consistency)

– Most difficult field to extract due to the complexity and variability of 

study design descriptions

3. Low Consistency

o Blinding: Extracted 5/8 data points correctly (63% consistency)

– Inconsistencies in how blinding information was reported across 

studies led to lower extraction performance

ERROR ANALYSIS

Contextual Misinterpretations

 Errors typically occurred due to the system misinterpreting context, 

especially for complex fields (e.g., Study Design) 

o E.g., in studies that included multiple designs or exploratory sub-

studies, the system sometimes incorrectly identified the primary design

Incomplete Extractions

 Some fields were partially extracted correctly, but had missing data

o E.g., For “Location”, the system sometimes only extracted one country 

when the study was conducted across multiple counties.

Results
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Figure 4: Heatmap of Consistency Rates Across Different 

Systematic Reviews and Fields

Figure 1: Workflow for Automated Data Extraction

API, application programming interface; RAG, retrieval-augmented generation
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Conclusions

 GPT-4o and RAG-based system shows high level of accuracy for certain measures of data extraction from published 

articles, although variability in performance across different fields indicates the need for further refinement

 Future development will focus on enhancing contextual understanding for complex fields, improving synonym 

recognition/semantic analysis, expanding/fine-tuning the system using broader datasets, and improving data 

extraction accuracy for additional fields, such as efficacy and safety measures

o These improvements aim to create a more robust and comprehensive tool for data extraction and evidence synthesis

GPT-4o and RAG-based system achieved an average consistency rate of 84% across diverse data 

types compared with extractions from domain experts

Figure 2: Overall Distribution of Consistent Extractions
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Figure 3: Consistency Rates by Data Field Type
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