
Methods

Introduction

• Cost-effectiveness analyses routinely require 
extrapolation of time-to-event data such as 
overall survival. 

• HTA guidelines recommend comparing the 
within-study empirical hazards to the predicted 
hazard functions of parametric survival models, 
to guide the choice of survival extrapolation.1-3  

• Previous research have shown empirical 
examples of hazard functions that become 
unstable at the tail (i.e. near the end of follow-
up), when the number of patients at risk is 
low.4
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• Smoothed hazards were estimated using 
muhaz and bshazard R packages, based on 
kernel-based and spline smoothing methods, 
respectively. 

• Each function was fit to 1,000 simulated 
cohorts, each with 1,000 patients, using the 
default function settings. Muhaz fits until 10 
patients remain at risk, whilst bshazard fits for 
the duration of study follow-up. 

• The time-to-events for simulated cohorts were 
sampled from a ‘true’ underlying exponential 
survival distribution, with a constant hazard rate 
of 30 cases/100 person-years (Table 1).

• A sensitivity analysis considered a more 
complex hazard function, with two turning 
points, using a mixture Weibull distribution. This 
was created by combining two simulated 
cohorts (n = 500 each), each with a different 
underlying Weibull hazard function. 

• The accuracy of each hazard function was 
estimated over the study follow-up by 
calculating the mean absolute error (MAE) and 
mean absolute percentage error (MAPE) 
between the smoothed hazard function fit to 
each simulation, and the true underlying hazard. 

• Results were categorised by the number of 
patients at risk (intervals of 10) or by follow-up 
time (i.e. months, intervals of 6) and averaged 
across all simulated cohorts. 

Conclusions
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Table 1: Simulation parameters

Aim

We aim to evaluate the accuracy of two 
common smoothed empirical hazard functions 
in predicting the 'true' hazard rate and assess 
their performance over the length of follow up 
and by the number of patients at risk.

• Using a constant hazard, both functions 
performed similarly well until the numbers at 
risk were low, at which point the smoothed 
hazards became increasingly inaccurate, 
particularly with the muhaz function (Fig. 1). 

• At the tail (end of study follow-up), the muhaz
smoothed hazard function was prone to 
predicting turning points that were not reflective 
of the true underlying hazard. 

• The MAE increased with lower numbers of 
patients at risk, from 0.0022 (8.9% MAPE) and 
0.0018 (7.3%) with between 91 and 100 patients 
at risk, up to 0.0065 (26%) and 0.0032 (13%) 
with between 21 and 30 patients at risk, for 
muhaz and bshazard respectively (Fig. 2). 

• Using a complex hazard function (two turning 
points), both smoothed hazard functions 
performed well when the sample size was large 
(Fig. 3A). 

• The largest error in the smoothed hazard 
functions was observed at the tail (Fig. 3B), with 
a small increase in the error around the turning 
points in the hazard.

• Overall, few simulations captured the tail of the 
hazard function well. 

• With a large sample size, both the muhaz and 
bshazard smoothed hazard functions perform 
well until the numbers at risk were low, for both 
simple and complex hazard shapes. 

• At the tail, when the numbers at risk are low, 
observed turning points in the hazard function 
may not reflect the true underlying hazard.

• To aid interpretation, we recommend that both 
smoothed hazard methods are presented, 
alongside confidence intervals (where 
possible), and with the numbers of patients at 
risk and numbers of events displayed. 

• Our analysis did not consider how inaccuracies 
in the smoothed hazard functions may influence 
the choice of extrapolation model (or the 
consequences of this). 

• We did not consider smaller sample sizes or 
alternative censoring patterns

• Identifying an exact ‘threshold’ at which 
smoothed hazard functions become unreliable is 
challenging, and further research is required. 
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Figure 1: Smoothed hazards across 50 simulated cohorts.

Figure 3: A complex hazard function (mixture Weibull) with A) 
smoothed hazard functions vs. the ‘true’ underlying hazard (n=50 
simulations shown) and B) the Mean Absolute Error across time 
intervals for the two smoothed hazard functions (n=1000 
simulations). 

Figure 2: Mean absolute error based on number of patients at 
risk, where the underlying true hazard is constant. 
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Existing smoothed hazard functions 
accurately predict the ‘true’ hazard until 

numbers at risk become small. The hazard 
at the tail is often misrepresented and 

should not be relied on as evidence of a 
turning point in model extrapolations.


