Cost-Effectiveness Analysis of PCV20 3+1 Versus PCV15 2+1 Vaccination of the Pediatric Population in the Netherlands

An Ta,¹ Elizabeth Vinand,¹ Michel Peters,² Esra Çakar,² Aleksandar Ilic,³ Johnna Perdrizet⁴

¹Cytel, United Kingdom; ²Pfizer, Capelle aan den IJssel, Netherlands; ³Pfizer, London, United Kingdom; ⁴Global Value and Evidence, Pfizer Canada, Kirkland, QC, Canada

Total QALYs

INTRODUCTION

- The Dutch pediatric National Immunization Program (NIP) has included the pneumococcal conjugate vaccine (PCV) with valency of 10 (PCV10) since 2011.¹ However, increases in pneumococcal disease due to non-PCV10 serotypes indicate a need for higher-valent vaccines.²
- In December 2024, the Netherlands will incorporate the 15-valent PCV (PCV15) under a 2+1 schedule into the pediatric NIP, while the 20-valent PCV (PCV20), approved by the European Medicines Agency in March 2024 under a 3+1 schedule, is not yet included.^{3,4}

DECIIITC							
REJULIJ							
Table 3. Dase-case results							
Model outcomes	PCV15 2+1	PCV20 3+1	Incremental				
Cases of IPD	17,936	14,492	-3,444				
Cases of hospitalized pneumonia	284,079	268,783	-15,296				
Cases of non-hospitalized pneumonia	2,232,683	2,220,257	-12,426				
Cases of OM	567,895	541,403	-26,492				
Number of deaths due to disease	28,406	26,845	-1,561				

533,892,524

OBJECTIVE

• This study examined the cost-effectiveness of implementing PCV20 under a 3+1 schedule versus PCV15 under a 2+1 schedule in the Dutch pediatric NIP.

METHODS

- The analysis employed a Markov multiple-cohort model with annual cycles over a 10-year time horizon from a societal perspective with annual discount rates of 1.5% (benefits) and 3.0% (costs) as per Zorginstituut Nederland guidelines.⁵
- The model encompassed clinical events: invasive pneumococcal disease (IPD), hospitalized and non-hospitalized pneumonia, otitis media (OM), a non-disease state, and death.
- The vaccinated cohort included infants aged <2 years, with 12-month stratification for children aged <5 years and broader groups for older individuals to allow for age-specific variations in event probabilities, utilities, costs, and mortality rates.
- Parameters including epidemiology, serotype coverage, cost, and quality of life were informed by Dutch-specific sources (**Table 1**).^{2,6-17}
- Direct effects benefited the vaccinated cohort, and indirect effects benefited the entire population (Table 2). Direct effects against IPD were Dutch-specific data from RIVM², and direct effects against non-invasive disease from 7-valent PCV (PCV7) trials.¹⁸⁻²² Indirect effects were based on PCV10/13-valent PCV (PCV13) effectiveness, PCV7 efficacy, and PCV13 impact data.¹⁸⁻²⁴
- Model outcomes included disease cases, deaths, medical cost of doses, medical cost of disease, societal costs (travel cost and productivity loss), life-years (LY), quality-adjusted life years (QALY), and incremental cost-effectiveness ratios (ICER).
- Model robustness was evaluated through deterministic sensitivity analyses (DSA), probabilistic sensitivity analyses (PSA), and a series of additional scenario assessments.

Table 1. Key inputs

Iotal LYS	617,587,557	617,606,738	19,180
Total medical cost of doses	€340,639,758	€496,273,984	€155,634,226
Total medical cost of disease	€3,940,362,200	€3,810,249,190	- €130,113,010
Total travel costs of administration	€20,118,628	€26,824,884	€6,706,256
Total societal cost of disease (productivity loss)	€1,367,808,378	€1,306,215,210	-€61,593,168
Total costs	€5,668,928,964	€5,639,563,268	-€29,365,696
ICER per QALY	-	-	PCV20 is dominant

Abbreviations: ICER, incremental cost-effectiveness ratio; IPD, invasive pneumococcal disease; LY, life-year; OM, otitis media; PCV, pneumococcal conjugate vaccine; QALY, quality-adjusted life year.

Base-case results

- PCV20 was estimated to reduce more of the clinical and economic burden of pneumococcal disease than PCV15, resulting in cost-savings and QALY gains, making it the dominant strategy (**Table 3**).
- Despite the additional vaccination costs and travel expenses, PCV20 was projected to generate savings in medical costs and societal costs compared with PCV15 over the 10-year time horizon.

Figure 1. DSA results: PCV20 versus PCV15

Sensitivity and scenario results

533,925,756

33,232

- The DSA identified the maximum indirect effect against hospitalized pneumonia from PCV20 as the primary driver of QALYs and costs (Figure 1).
- In the PSA, PCV20 was the dominant strategy compared with PCV15 in 57.0% of the 1,000 simulations, while being more effective but more costly in 42.9% of simulations (Figure 2).

		IPD		Hospita	alized	Non-hospitalized	
Input	Age, y	Meningitis	Bacteremia	pneum	nonia	pneumonia	OM
	<5	8.6		23	7	1,726	7,734
Incidence per 100,000 individuals ^{2,6}	5–17	3.7 14.7 35.7		67	7	497	
	18–49			50)	468	-
	50–64			12	7	992	-
	≥65			44	9	2,895	-
	<5			1.4		-	-
	5–17		7.0	1.1		-	-
Fatality rate, ^{2,7} %	18–49	7.0		0.9		-	-
	50–64			3.0		-	-
	≥65			15.2		-	-
	<2	12,161.93	6,668.90	3,350.68		624 67	24 60
Medical costs per episode, ^{8,9} €	2–4	9,061.66	1,984.54			024.07	24.03
	5–17	10,250.26	4,960.99	4,080.66		650.59	-
	18–49	11,652.53	13,001.02	7,398.01		937.01	-
	50–64	26,575.12	13,699.32	7,982.23		1,053.65	-
	≥65	25,533.03	10,275.55	7,625.36		1,061.64	-
	<1	3,837.25	2,257.21	808.08 907.40 2,090.17 2,695.11 3,322.61			225 72
	1–4	2,257.21	790.02				220.12
Societal costs (productivity	5–17	3,160.09	3,385.81			225 72	-
loss), ⁸⁻¹⁰ €	18–49	6,320.18	6,771.62				-
	50–64	10,834.60	7,223.07				-
	≥65	10,383.16	6,997.34				-
Litility decrements ¹¹⁻¹⁶	<18	0.023	0.008	0.00	06	0.004	0.005
othity decrements	≥18	0.13	0.13	0.13		0.045	-
	Vaccine	Age <5 y	Age 5–49 y	Age 50	–64 y	Age ≥65 y	-
Current serotype distribution by vaccine, ² %	PCV15	64.1	50.4	54.3		53.9	-
	PCV20	78.4	77.6	81.5		74.2	_
	Age, y		PCV15	PCV20			
Cost of dose, ¹⁸ €	All ages		68.56	76.10			
Administration cost per dose, ¹⁹ €	All ages		12.81	12.81			
Travel cost per dose, ²⁰ €	All ages		4.81		4.81		

All tested scenarios confirmed PCV20 as the dominant or cost-effective strategy at a willingness-to-pay threshold of €20,000 per QALY.

Abbreviations: DSA, deterministic sensitivity analysis; IPD, invasive pneumococcal disease; QALY, quality-adjusted life year; PCV, pneumococcal conjugate vaccine.

Figure 2. PSA results: Cost-effectiveness plane

The PSA was assessed at a willingness-to-pay threshold of €20,000 per QALY per Zorginstituut Nederland Guidelines.⁵ Abbreviations: PCV, pneumococcal conjugate vaccine; PSA, probabilistic sensitivity analysis; QALY, quality-adjusted life year.

CONCLUSIONS

This cost-effectiveness analysis demonstrated that implementation of PCV20 3+1 instead of PCV15 2+1 in the Dutch pediatric NIP would reduce the clinical burden of, and costs

Abbreviations: IPD, invasive pneumococcal disease; OM, otitis media; PCV, pneumococcal conjugate vaccine; y, years.

Table 2. Vaccine effectiveness inputs

		Year						
		1	2	2 3		4		6–10
Indirect effe (PCV15/PCV	ct – ramp-up /20), ^{21,22} %	0.0	37	7.5 52.8		67.7	82.	.7 100.0
	Age group, years	IPD ^{21,22}		Hospitalized pneumonia ^{†22,23,2}	24,25	Non-hospita pneumonia ^{†23}	alized 2,23,24,25	OM ^{§22,26}
Indirect	<17	83.0		30.5		25.5		20.0
	18–49	83.0		15.0		0.0		-
effects, %	50–64	77.0		15.0		0.0		-
	≥65	73.0		15.0		0.0		-
		IPD ²		Hospitalized pneumonia ²⁷		Non-hospita pneumon	alized ia ²⁸	OM ²⁸
Direct effect	s,‡ %	88.0		25.5		6.0		7.8

Indirect vaccine impact data were adjusted using serotype coverage pre-PCV13 to current era for higher-valent vaccines. [†]For children, Levy et al. 2017²³ data were adjusted using Janoir et al. 2016²⁴ IPD serotype distribution at PCV13 introduction in 2009. For adults, Rodrigo et al. 2015²⁵ data were similarly adjusted using the distribution from Ladhani et al. 2018.²² [§]Data from Lau et al. 2015²⁶ were adjusted for IPD serotype distribution by Ladhani et al. 2018²² at PCV13 introduction in 2009. [‡]Direct vaccine efficacy data were adjusted using serotype coverage pre-PCV7 to current year for higher-valent vaccines. PCV7 all-cause efficacy data were adjusted for pre-PCV7 era (80.6% PCV7 serotype coverage) to pre-PCV20 era for PCV20 (47.5%) and PCV15 (17.8%); Pfizer data on file. Abbreviations: IPD, invasive pneumococcal disease; OM, otitis media; PCV, pneumococcal conjugate vaccine.

associated with, pneumococcal disease, making PCV20 the dominant vaccination strategy.

References: 1. Peckeu et al. Vaccine. 2021;39:431-7. 2. RIVM. The national immunization programme in the Netherlands: surveillance and developments in 2022–2023. **3.** RIVM. Timing of vaccinations. **4.** EMA. Prevnar 20. European public assessment report. **5.** Guideline for economic evaluations in healthcare: Zorginstituut Nederland. 2024. **6.** RIVM. The national immunization programme in the Netherlands: surveillance and developments in 2018–2019. 7. Wilson et al. Infect Dis Ther. 2023;12:1809-21. 8. Rozenbaum et al. BMJ. 2010;340:c2509. 9. Rozenbaum et al. Vaccine. 2015;33:3193-9. 10. Jansen et al. Vaccine. 2009;27:2394-401. 11. Stoecker et al. Pediatrics. 2013;132:e324-32. <u>12.</u> Melegaro et al. Vaccine. 2004;22:4203-14. <u>13.</u> Rozenbaum et al. BMJ. 2012;345:e6879. <u>14.</u> Mangen et al. BMC Infect Dis. 2017;17:208. 15. Mangen et al. Eur Respir J. 2015;46:1407-16. 16. Mangen et al. 2013. BMC Infect Dis. 2013;13:597. 17. Versteegh et al. Value Health. 2016;19:343-52. 18. Z-Index, G-Standaard Taxe. March 2024. https://www.z-index.nl/g-standaard [Accessed July 2024]. **19.** Pugh et al. Infect Dis Ther. 2020;9(2):305-24. **20.** Zorginstituut Nederland. Kostenhandleiding voor economische evaluaties in de gezondheidszorg: Methodologie en Referentieprijzen. 21. Perdrizet et al. Infect Dis Ther. 2023;12:1351-64. 22. Ladhani et al. Lancet Infect Dis. 2018;18:441-51. 23. Levy et al. Vaccine. 2017;35:5058-64. 24. Janoir et al. Open Forum Infect Dis. 2016;3(1):ofw020. 25. Rodrigo et al. Eur Respir J. 2015;45:1632-41. 26. Lau et al. Vaccine. 2015;33:5072-9. 27. Hansen et al. Pediatr Infect Dis J. 2006;25:779-81. 28. Black et al. Pediatr Infect Dis J. 2000;19:187-95.

Acknowledgments: We would like to thank Sally Neath, Cytel, for medical writing support, funded by Pfizer Inc, for taking the necessary time and effort to review the poster. Disclosures: Michel Peters, Esra Çakar, Aleksandar Ilic, and Johnna Perdrizet are employees of Pfizer Inc.
Ilic, and Johnna Perdrizet are employees of Pfizer Inc. An Ta and Elizabeth Vinand are employees of Cytel, which received consulting fees from Pfizer Inc for the
study and poster development.

For more information please contact: Michel Peters, Sr. Market Access & HTA Manager Pfizer BV, Rivium Westlaan 142, 2909 LD Capelle aan den Ijssel, The Netherlands Phone: +31 10 406 4604 Email: michel.peters@pfizer.com www.Pfizer.nl

Presented at ISPOR Europe; 17–20 November 2024; Barcelona, Spain