Cost-consequence model comparing the originator r-hFSH-alfa and its biosimilar for ≤4 complete ovarian stimulation cycles during Assisted Reproductive Technology treatment in Spain, France and Germany

Kemal Uca¹, Claudia Roeder², Helene Vioix^{1*}, Vivek Chaudhari³, Cristina Masseria², Roberta Longo², Juan-Enrique Schwarze¹ ¹Merck Healthcare KGaA, Germany, ²AESARA Europe, ³EMD Serono Inc, Boston, USA; *was employed at Merck Healthcare KGaA at the time of study

CONCLUSIONS

Originator r-hFSH-alfa vs Biosimilars

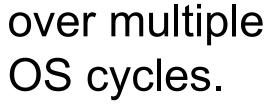
Higher CLBR

Lower costs per live birth

Shorter time to live birth

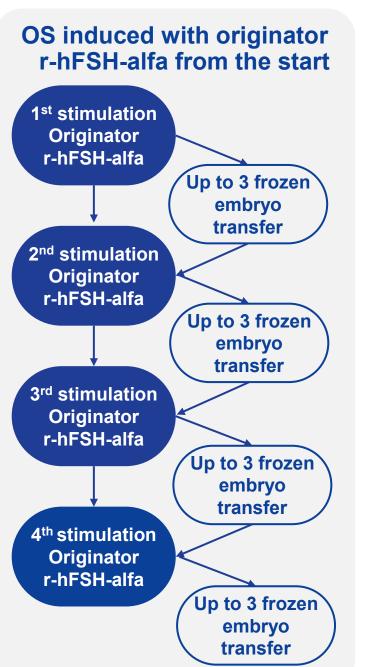
- Starting and continuing OS with originator r-hFSH-alfa may save time and costs in achieving LB versus biosimilars.
- Authors recommend considering the prioritization of originator r-hFSH-alfa in ART treatments based on these findings.
- This change could set a new standard in fertility therapy, improving patient outcomes and access to effective treatments.

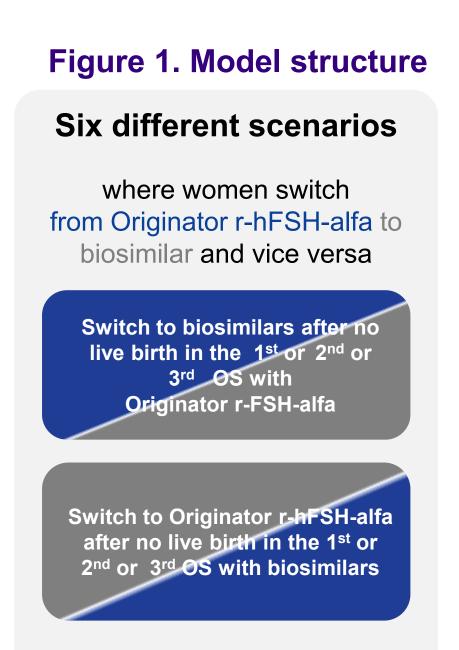
NTRODUCTION

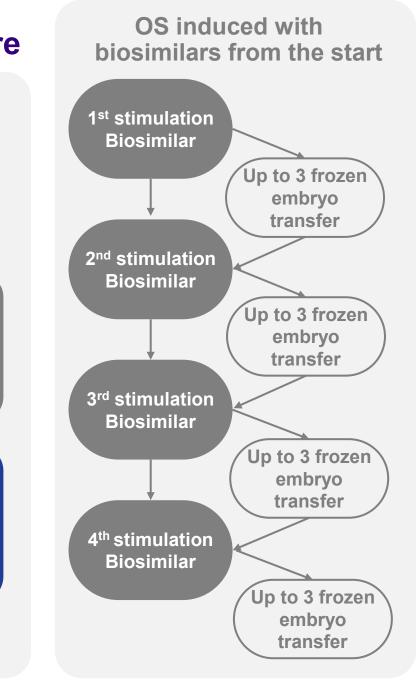

 Recent studies show that originator recombinant human follicle-stimulating hormone-alfa (r-hFSH-alfa) is associated with higher cumulative live birth rates (CLBR) than biosimilars, which leads to reduced costs per live birth (LB).^{1,2,3}

- With the increasing demand of fertility services, it is imperative to assess the cost-effectiveness of Assisted Reproductive Technology (ART) treatments in European public systems.
- Evidence regarding the most cost-effective treatment pathway is limited to the first or second ovarian stimulation (OS) cycles^{1,2}. However, most women undergo multiple OS cycles.^{3,4}

OBJECTIVES


To evaluate the clinical and economic outcomes of initiating OS with either the originator r-hFSH-alfa or its biosimilars and consider the implications of continuing or switching treatments over multiple (≤4)





METHODS

- A decision-tree model assessed costs and outcomes (CLBR, total treatment costs, time to LB, costs per LB) comparing originator r-hFSH-alfa versus biosimilars, using clinical data (pregnancy rate, LBR, miscarriage rate) from a recent RWE study⁵ and a meta-analysis⁶, and cost data (stimulation costs, drug costs, embryo transfer and birth/miscarriage costs) from Spain, France and Germany⁷ (**Figure 1**).
- The model considered four complete OS cycles (leading to ovarian pick up), each with one fresh and up to three frozen/thawed embryo transfers.
- Treatment started with either originator r-hFSH-alfa or biosimilar.
- If no live birth occurred, women either continued with frozen embryo transfer or initiated a new OS cycle.
- Outcomes were explored in 2 base-case scenarios (4 OS cycles with either originator) r-hFSH-alfa or biosimilar) and 6 switching scenarios (treatment was switched after the 1st, 2nd, or 3rd stimulation cycle without a live birth) (Figure 1).
- Model structure and assumptions were validated.

RESULTS

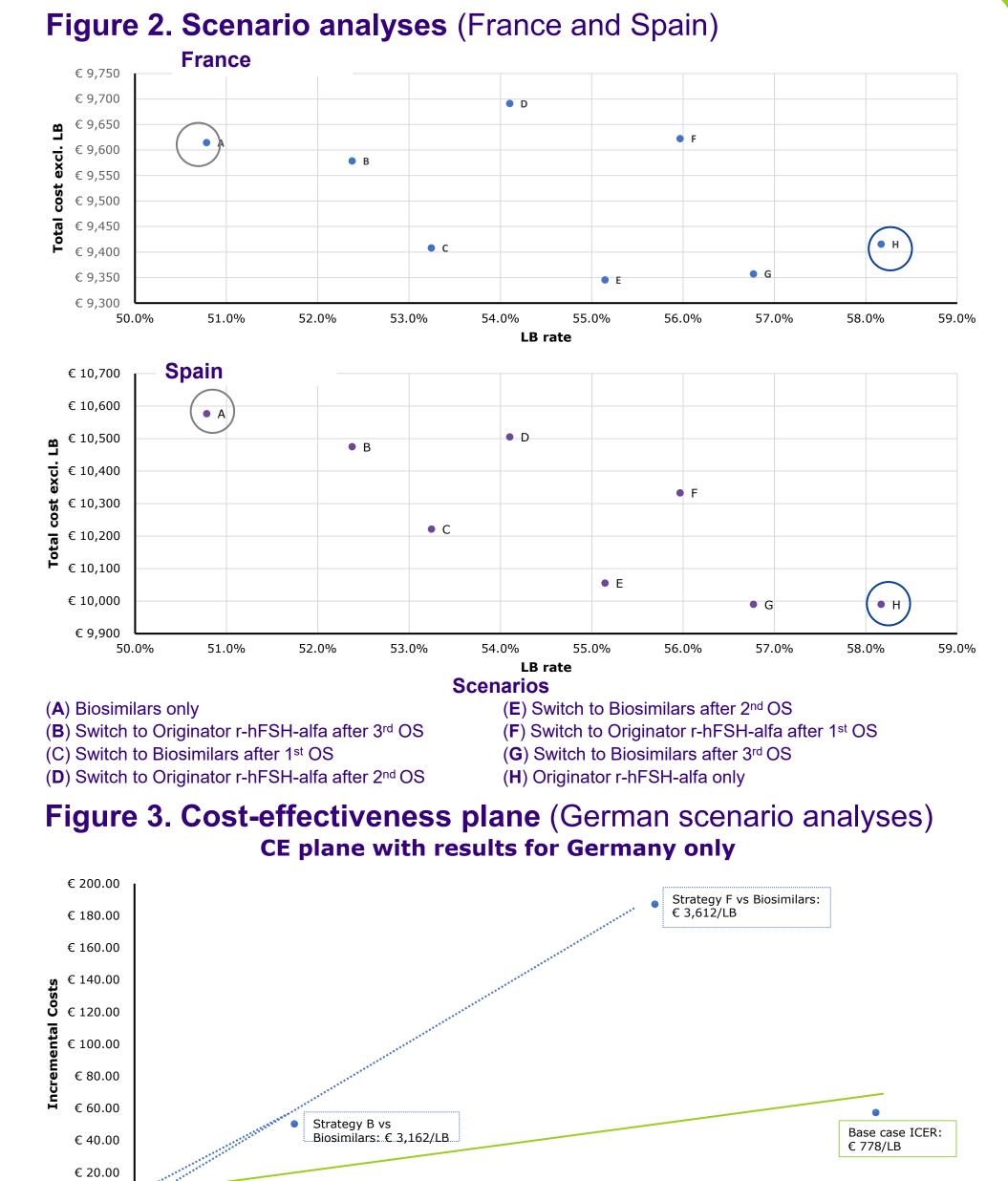

- The base-case analysis demonstrated that treatment with originator r-hFSH-alfa achieved a higher CLBR of 58.2% compared to 50.8% with biosimilars (**Table 1**).
- Base case cost-effectiveness results show that "originator r-hFSH-alfa only" dominates "biosimilars only" in Spain and France, being less costly and more effective. (Table 1 and Figure 2).
- In the German setting, the incremental cost-effectiveness ratio (ICER) of "originator r-hFSH-alfa only" vs "biosimilars only" was €778 per live birth in base-case scenario (Figure 3). In the switching scenario analyses starting with biosimilars, the ICER was €3,125 for switching to originator r-hFSH-alfa after the third cycle and €3,617 for switching after the first cycle (**Figure 3**).
- Originator r-hFSH-alfa was also associated with a shorter time to live birth (936 days vs 980 days).

Table 1. Base Case results: LBR, total treatment costs (excl. costs for pregnancy and LB)

	LBR		Costs Germany		Costs France		Costs Spain	
	Originator r-hFSH-alfa	Biosimilar	Originator r-hFSH-alfa	Biosimilar	Originator r-hFSH-alfa	Biosimilar	Originator r-hFSH-alfa	Biosimilar
1st stimulation, cumulatively	23.6%	19.6%	€ 3,440	€ 3,231	€ 3,274	€ 3,158	€ 3,474	€ 3,474
2 nd stimulation, cumulatively	15.2%	13.3%	€ 2,627	€ 2,597	€ 2,500	€ 2,538	€ 2,653	€ 2,793
3 rd stimulation, cumulatively	11.1%	10.1%	€ 2,103	€ 2,167	€ 2,002	€ 2,118	€ 2,124	€ 2,330
4 th stimulation, cumulatively	8.2%	7.8%	€ 1,722	€ 1,841	€ 1,639	€ 1,800	€ 1,739	€ 1,980
Cumulative results	58.2	50.8	€ 9,892.97	€ 9,836	€ 9,416	€ 9,614	€ 9,990	€ 10,577

Costs per live birth across all markets after four cumulative OS were lower with originator r-hFSH-alfa than biosimilar

€16,187 vs **€18,932** France €17,174 vs €20,828 Spain **€17,007** vs **€19,367** Germany

5.0%

Incremental LBR

6.0%

7.0%

2.0%

1.0%

Abbreviations: ART, assisted reproductive technology; CLBR, cumulative live birth rates; ICER, incremental cost-effectiveness ratio; LB, live birth; OS, ovarian stimulation; RWE, real world evidence; r-hFSH-alfa, recombinant human follicle-stimulating hormone References: 1. Xue W, Lloyd A, et al. A cost-effectiveness evaluation of the originator follitropin alpha compared to the biosimilars for assisted reproduction in Germany. Int J Womens Health. 2019;11:319-331; 2. Schwarze JE, Venetis C, et al. Originator recombinant human follitropin alpha compared to the biosimilars for assisted reproduction in Germany. Int J Womens Health. 2019;11:319-331; 2. Schwarze JE, Venetis C, et al. Originator recombinant human follitropin alpha compared to the biosimilars for assisted reproduction in Germany. Int J Womens Health. 2019;11:319-331; 2. Schwarze JE, Venetis C, et al. Originator recombinant human follitropin alpha compared to the biosimilars for assisted reproduction in Germany. Int J Womens Health. 2019;11:319-331; 2. Schwarze JE, Venetis C, et al. Originator recombinant human follitropin alpha compared to the biosimilars for assisted reproduction in Germany. Int J Womens Health. 2019;11:319-331; 2. Schwarze JE, Venetis C, et al. Originator recombinant human follitropin alpha compared to the biosimilars for assisted reproduction in Germany. Int J Womens Health. 2019;11:319-331; 2. Schwarze JE, Venetis C, et al. Originator recombinant human follitropin alpha compared to the biosimilars for assisted reproduction in Germany. Int J Womens Health. 2019;11:319-331; 2. Schwarze JE, Venetis C, et al. Originator recombinant human follitropin alpha compared to the biosimilar or assisted reproduction in Germany. Int J Womens Health. 2019;11:319-331; 2. Schwarze JE, Venetis C, et al. Originator recombinant human follitropin alpha compared to the biosimilar or assisted reproduction in Germany. Int J Womens Health. 2019;11:319-331; 2. Schwarze JE, Venetis C, et al. Originator recombinant human follitropin alpha compared to the biosimilar or assisted reproduction in Germany. biosimilars in Spain: A cost-effectiveness analysis of assisted reproductive technology related to fresh embryo transfers. Best Pract Res Clin Obstet Gynaecol. 2022;85(Pt B):203-216; 3. Borget I, Benchaib M, et al. A cost-effectiveness analysis of gonadotropins used for ovarian stimulation during assisted reproductive technology. based on data from the French nationwide claims database (SNDS). Gynaecol Obstet Invest. 2024; accepted 4. Bühler K, Roeder C, et al. Cost-effectiveness analysis of recombinant human follicle-stimulating hormone alfa (r-hFSH) and urinary highly purified menopausal gonadotropin (hMG) based on data from a large German registry. Best Prac Res Clin Obstet Gynaecol. 2022;85:188-202.; 5. Grynberg M, Cedrin-Durnerin I, et al. Comparative effectiveness of gonadotropins used for ovarian stimulation during assisted reproductive technologies (ART) in France: A real-world observational study from the French nationwide claims database (SNDS). Best Pract Res Clin Obstet Gynaecol. 2023;88:102308; 6. Chua SJ, Mol BW, et al. Biosimilar recombinant follitropin alfa preparations versus the reference product (Gonal-F®) in couples undergoing assisted reproductive technology treatment: a systematic review and meta-analysis [published correction appears in Reprod Biol Endocrinol. 2023 Jul 26;21(1):68]. Reprod Biol Endocrinol. 2021;19(1):51; 7. Matorras R, Chaudhari VS, et al. Evaluation of costs associated with fertility treatment leading to a live birth after one fresh transfer: A global perspective. Best Pract Res Clin Obstet Gynaecol. 2023;89:102349 **Funding:** This study was funded by Merck KGaA (Darmstadt, Germany).