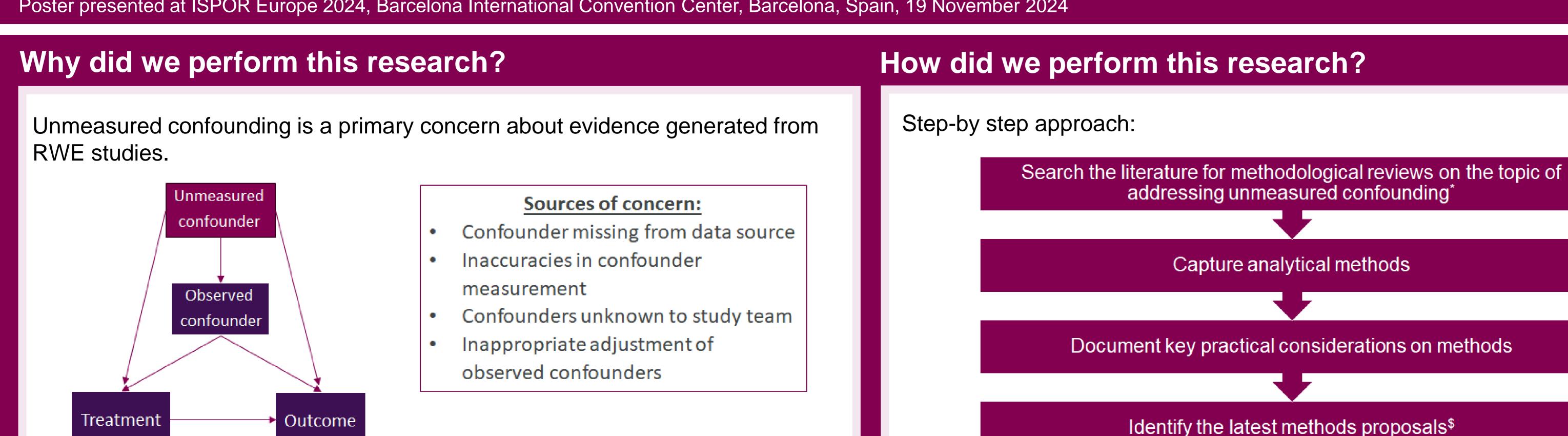
Understanding the potential threat of unmeasured confounding in RWE studies: what statistical methods can be used for robustness assessment?

Kirsty Rhodes,^{1*} Huifang Chen,² Mario Ouwens,³ Di Ran⁴

¹Real-world science and analytics, Biopharmaceuticals Medical, Cambridge, United Kingdom; ²Oncology Biometrics, Waltham, US;

³Real-world science and analytics, Biopharmaceuticals Medical, Gothenburg, Sweden; ⁴Statistical innovation, Oncology Biometrics, Gaithersburg, US.


*Presenting author

DISCIOSURES: This study was supported by AstraZeneca. KR, HC, MO and DR: employees of AstraZeneca and hold stock and/or stock options in the company.

Corresponding author email address: kirsty.rhodes@astrazeneca.com

Poster presented at ISPOR Europe 2024, Barcelona International Convention Center, Barcelona, Spain, 19 November 2024

Quality of evidence will be a critical aspect of joint clinical assessment¹. Sensitivity analyses may be required in response to criticism of RWE.

Aim: To provide practical considerations that will aid in selecting appropriate methods for addressing unmeasured confounding.

PubMed search on 17 September 2024: (unmeasured confound[Title]) OR (uncontrolled confound*[Title]) OR (residual confound*[Title]) AND (method*[Text Word]) Filters: Review, in the last 10 years; ^{\$}PubMed search on 17 September 2024 : (unmeasured confound*[Title]) OR (uncontrolled confound*[Title]) OR (residual confound*[Title]) AND ((adjust*[Title]) OR (assess*[Title])) Filters applied: in the last 1 year

RWE guidance (CADTH², EUnetHTA³, IQWiG⁴, NICE⁵) was reviewed for recommendations on use of sensitivity analysis.

What did we find?

Study planning

Table 1: High level practical considerations on methods to address unmeasured confounding

Study planning				•					
	-			esign considerations		1	Analysis requirements		_
 NICE, CADTH: select appropriate confounders based on literature review and export opinion 	Type of method	Method	Nature of unmeasured confounder(s)	Sensitivity parameter inputs	Applicable effect measures	Internal data	External "out-of- sample" data	Implementation (availability of tools)	
 expert opinion. All guidance: assess robustness of findings to possible sources of uncertainty through sensitivity analyses. Pre-specify as far as possible. 		E-value	None	None	RR, with approximations available for OR, HR, SMD		None	Simply plug in RR into formula. Calculator available: <u>https://www.evalue- calculator.com/</u> [accessed 24 Sept. 2024]. Available in R package <i>Evalue</i>	Minimum strength of association that the confounder needs to have with treatment and the outcome to change the study conclusion
Methods		Rosenbaum and Rubin 1983	One hinary	Confounder prevalence, association (OR) between confounder and outcome per group and association (OR) between confounder and treatment	(binary	Individual patient-level [for observed confounding control]		per strata of observed covariates or propensity scores. App	parameter inputs, aiding assessment of how strong
 In total, 19 methods for addressing unmeasured confounding were identified from 8 methodological reviews⁶⁻¹³. Sensitivity analyses ranged from simple 	Threshold analyses								
threshold analyses to more complex bias				Confounder					outcome) need to be to
 modelling techniques. Use of the E-value was the most frequent sensitivity analysis in medical and epidemiological journals¹³. 		Array/rule- out approach	One binary confounder	prevalence per group and association between the confounder and outcome (RR)	-		None	Straightforward formula to compute bias. Available in R package <i>episensr</i>	change the study conclusion
epidemological journals .		Negative	Assume there is ar						
 NICE provide analytical suggestions including use of negative controls, propensity score calibration and quantitative bias analysis. 	Net bias assessment	control outcomes (exposures	outcome that is not affected by treatment but has same confounding structure as study outcome		All applicable	Individual patient-level data	Internal data on negative control	study analysis but with	Estimated treatment effect on negative control outcome, facilitating detection of unmeasured confounding and other sources of bias
 New methods include a full data simulation approach¹⁴ to inform study planning and use of negative control populations, for example, to identify placebo-effects¹⁵. 	adjustment		Any form but need to know what the confounders are		All applicable	Individual patient-level data	Patient-level dataset comprising study treatment and all confounders	Uses propensity score estimation	Confounding-adjusted treatment effect estimate
 Table 1 gives practical considerations on a selection of methods that meet different purposes (robustness assessment, bias quantification and bias detection). 		quantitative	Any form but need to know what the confounders are	representing	All applicable	Minimum requirement: Summary outcome data per treatment group		Uses Monte Carlo sampling. Available in software, such as the <i>b_probabilistic</i> R package	I Traatmant affact actimata
Reporting							Subsample or out-of-	Requires development	Combined confounder-
 All guidance: report studies in sufficient detail to enable independent reproducibility of 		IVIUITIDIE	Any form but need to know what the confounders are		All applicable	Individual	sample dataset in	of an imputation model. Key questions: which method, which variables?	adjusted treatment effect
results.				Strength of confounder-					
 This translates in our context to specifying sensitivity parameter inputs and assumptions in full and providing details of methods/tools used for implementation. 	Study design: bias quantification	simulation	Any form but need to know what the confounders are	treatment and confounder-outcome associations and		None	Simulated data to mimic study data	Assumes data generating mechanism to simulate study-like dataset. R package available: <i>sim.BA</i>	contolinder(s) is ignored.

Different methods may be complimentary:

confounder

- The E-value provides a convenient first step in assessing robustness of results to unmeasured confounding.
- Other methods allow robustness assessment based on what is understood about key confounders and associations with the study treatment and outcome.
- Net bias assessment methods such as those using negative controls may help to detect multiple sources of bias.
- More advanced methods can facilitate explicit adjustment of unmeasured confounders, incorporating uncertainty about the magnitude of bias.

How might this impact current practice?

- By providing practical considerations on methods to assess unmeasured confounding, we facilitate informed choices on which statistical method to use.
- Aiding pre-specification of methods for sensitivity analysis works towards building trust in RWE study findings.
- The practical considerations on methods highlight key components (assumptions, inputs, implementation) for reporting, enhancing transparency.
- Most methods require judgement on the plausible extent of confounding, thus highlighting a need for guidance on how to define plausibility.

Abbreviations	References				
HR, hazard ratio; ML, maximum likelihood;	1. EunetHTA 21(D4.5)-Individual Practical Guideline Document.	4. IQWiG. Concepts for the generation of routine practice data	7. Leahy TP et al. J Comp Eff Res. 2022. doi: 10.2217/cer-2022-	10. Loiacono MM et al. Influenza Other Respir Viruses. 2022. doi:	13. Latour CD et al. Am J Epidemiol. 2024. doi: 10.1093/aje/kwae234.
ratio; RWE, real-world evidence; SMD, 2. CADTH	 CADTH. Real-World Evidence Reporting Guidance.2023. EUnetHTA JA3WP5 Evidence Generation 	and their analysis for the benefit assessment of drugs according	0029.	10.1111/irv.12999.	14. Desai RJ et al. Am J Epidemiol. 2024. doi: 10.1093/aje/kwae102. 15. Piccininni M et al. Epidemiology. 2024. doi: 10.1097/EDE.0000000000001724.
		to Social Code §35a Book V. 2020	8. Zhang X et al. Pharmacoepidemiol Drug Saf. 2018. doi:	11. Streeter AJ et al. J Clin Epidemiol. 2017. doi:	
		5. NICE real-world framework. 2022.	10.1002/pds.4394.	10.1016/j.jclinepi.2017.04.022.	
		 Zhang X et al. Pharmacoepidemiol Drug Saf. 2020 doi: 10.1002/pds.5117. 2020 	9. Uddin MJ et al. Int J Clin Pharm. 2016. doi: 10.1007/s11096- 016-0299-0.	12. Arah OA. Annu Rev Public Health. 2017. doi: 10.1146/annurev- publhealth-032315-021644.	