

L Pilli^{1,2,3}, M Bliemer⁴, B Donkers^{2,5}, EW de Bekker-Grob^{1,2,3}, J Swait^{1,2}

¹Erasmus School of Health Policy & Management (ESHPM), Rotterdam, Netherlands,

²Erasmus Choice Modelling Centre (ECMC), ³Erasmus Centre for Health Economics Research (EsCHER),

⁴The University of Sydney Business School, Sydney, Australia ⁵Erasmus School of Economics (ESE)

INTRODUCTION

Individual decisions are often influenced by social factors, especially in health-related contexts where choices impact both healthcare users and those around them.

Current models in microeconomic choice theory typically overlook these **social influences**, treating decision makers as isolated entities driven by personal preferences.

This significant oversight is particularly relevant in healthrelated decision-making, where choices are frequently made within social groupings.

OBJECTIVE

- To introduce structural models of choice behavior that include single or multiple identifiable social influences on constructs within choice models, that is, preferences (systematic and stochastic) and choice set formation¹.
- To elaborate on **measurement** strategies that allow identification of social influence effects. This discussion includes the data requirements to uncover social influence mechanisms² and their association with choice constructs³ and the discrimination of endogenous and exogenous social effects as well as the correlated and non-social ones.

METHOD

- This conceptual paper formalizes structural models of choice grounded in the **goal-balancing framework**⁴ and measurement. The core idea underlying our models is that the **DM** attempts to balance the goals of maximizing their own preferences and adhering to social preferences.
- To allow the decision-makers to balance their own and social preferences, we characterize4 multiple goal pursuit as a vector optimization problem.
- This problem is solved through a non-linear solution that reduces the multiple-goal balancing strategy to a single measure that results in a multinomial logit model.
- Notably, stochasticity arises from the decision-maker's balancing of personal preferences versus a goal of adherence to social preferences. This contrasts with random utility models, where the stochasticity reflects the influence of variables unobserved by the analyst on the individual's choice.

RESULTS

- The choice behavior mimicry model capture the impact of observed or recommended behaviors from single or multiple influencers. They account for how knowledge of others' preferences can shape the decision-making process.
- 1. $[max]\Omega_1(p_n|M, V_n, w_n, q_n) = w_n \sum_{i \in M} p_{ni} V_{ni} + (1 w_n) \sum_{i \in M} p_{ni} \ln \binom{p_{ni}}{q^{\delta_n}}$
 - Subject to $\sum_{i \in M} p_{ni} = 1$; $p_{ni} \ge 0, \forall i \in M$
- The optimization of (1) leads to:
- 2. $p_j = \frac{q_{nj}^{\delta} exp(rV_{nj})}{\sum_{i \in M} q_{ni}^{\delta} exp(rV_{ni})}$, $\forall j \in M$; where $r = \frac{w}{(1-w)}$

- The screening behavior model elucidates the trade-offs between personal tastes and social influences that determine the availability or acceptability of alternatives.
- $\phi_{nj} = \begin{cases} 1 \text{ influencer "allows" alternative } j \in M \\ 0 \end{cases}$
- $C_n = \{j | \phi_{nj} = 1, \forall j \in M\}$
- 1. $[\max] \Omega_5(p|M, V, w_n, \phi_n) = w_n \sum_{i \in M} \phi_{ni}(p_i V_{ni}) + (1 w_n) \sum_{i \in M} \phi_{ni}(p_i \ln p_i)$ Such that $\sum_{i \in M} \phi_{ni} p_i = 1$; $\phi_{nk} p_k \ge 0$, $\forall k \in M$; $\phi_{nk} = 0 \Rightarrow p_k = 0$, $\forall k \in M - C_n$

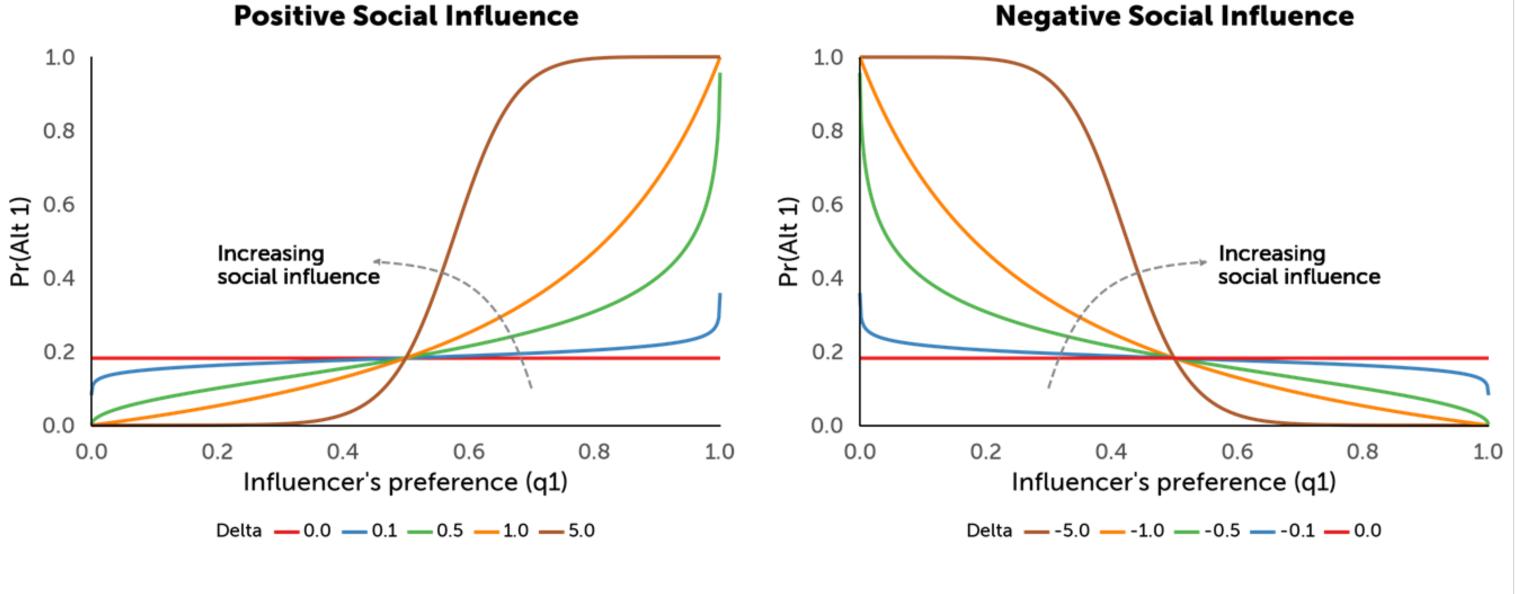
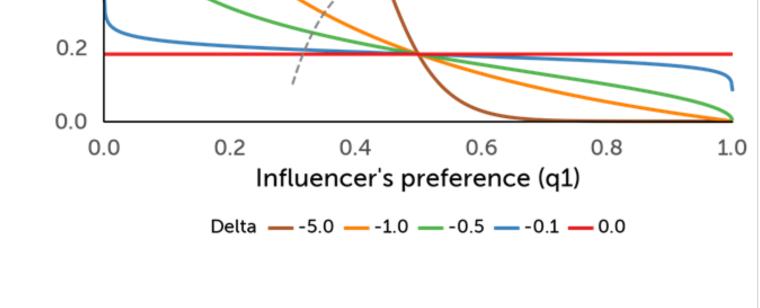
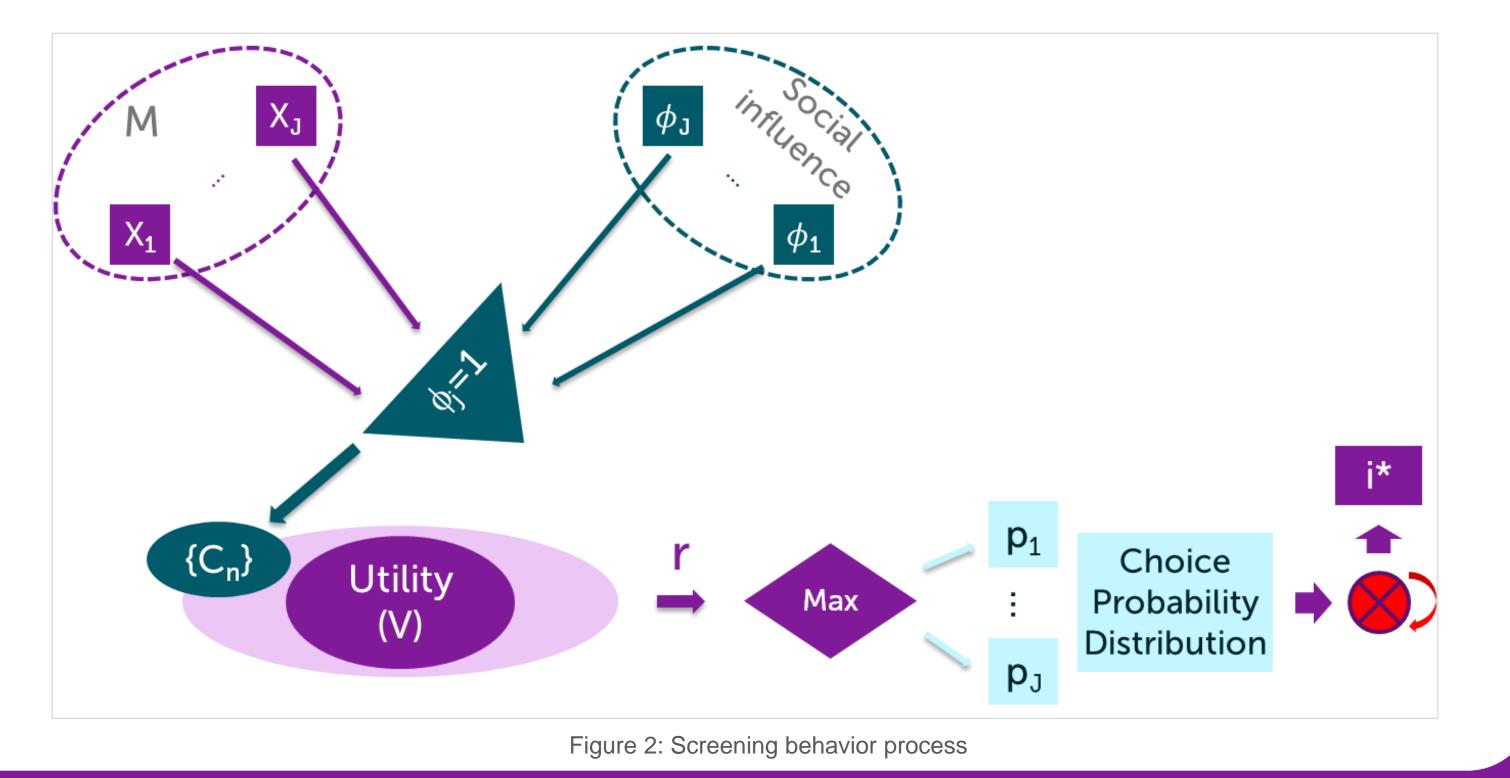




Figure 1: Example of choice behavior mimicry model

Maintained Conditions: Binary choice, V1=-1.5, V2=0.0, r=1.0, q2=1-q1

CONCLUSIONS

By integrating social context into the microeconomic framework of individual decision-making, our models:

- Offer a more realistic depiction of behavior within the utility maximization paradigm
- Enhance the explanation and prediction of healthcare user behavior, providing valuable insights for researchers and policymakers.
- This integration supports the design, selection, and implementation of more effective health policies.
- We strongly encourage the empirical testing of these models in diverse health contexts to validate their robustness and applicability.

REFERENCES

¹de Bekker-Grob, et al., 2022. Towards Accurate Prediction of Healthcare Choices: The INTERSOCIAL Project. The Patient 2022 15:5 15, 509–512

²Dellaert, B.G.C., et al., 2017. Individuals' decisions in the presence of multiple goals.

Customer Needs and Solutions 71, 1–14. ³Pilli, L., Veldwijk, J., Swait, J.D., Donkers, B., de Bekker-Grob, E.W., 2024. Sources and processes of social influence on health-related choices: A systematic review based on a social-

interdependent choice paradigm. Soc Sci Med 361, 117360. ⁴Swait, J., Marley, A.A.J., 2013. Probabilistic choice (models) as a result of balancing multiple goals. J Math Psychol 57, 1–14.

CONTACT INFORMATION

Luis Pilli (I.e.pilli@.eshpm.eur.nl)