

The Evaluation of Surgical Stapling in Robotic Thoracic Procedures – Clinical Outcomes and Resources Utilization

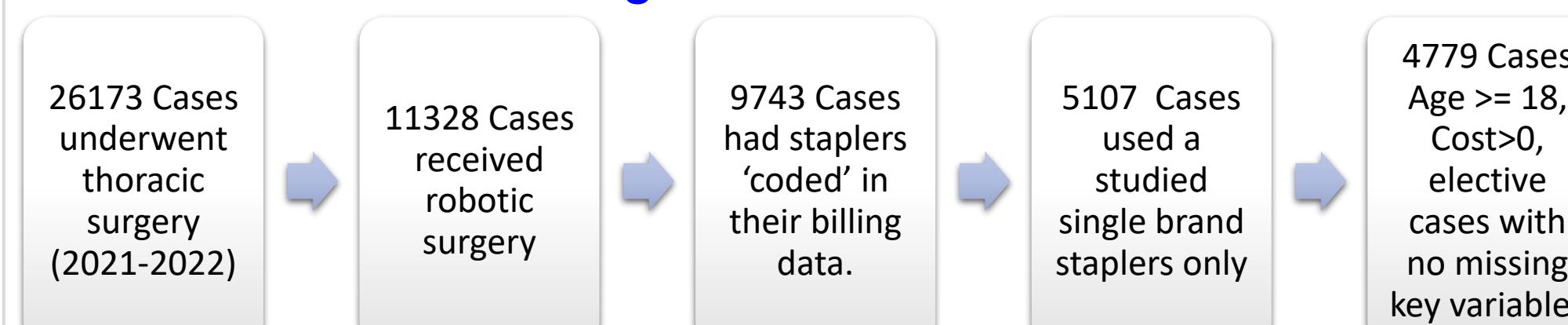
MT47

IW PAN MPH, PhD,
Medtronic, plc, Boston, MA, USA

INTRODUCTION

Few case studies have shown the favorite results of hybrid/bedside staplers used in robotic procedures.^{1,2}

OBJECTIVE


This study aims to evaluate the effectiveness of bedside staplers compared with robotic staplers on thoracic robotic surgical procedure.

METHOD

Data Sources:

PINC AI™ Healthcare Data, 2021-2022

Cohort Selection: Figure 1

Definition of staplers

- Bedside stapler (BS): Medtronic staplers (Signia™, Tri-stapler™, and other Medtronic staplers)
- Robotic stapler (RS): Intuitive SUREFORM™ staplers.

Baseline variables

Include both patient and hospital characteristics.

Outcomes variables

Clinical outcomes: used ICD 10 diagnosis and procedure codes, CPT codes to identify blood transfusion, bleeding, air leak, pneumothorax, bronchopleural fistula according to existing literature³⁻⁵

Healthcare resources utilization: operating room (OR) time in minutes, total inpatient costs in 2022 US dollars, and lengths of stay (LOS)

Statistical analysis

Baseline variable balance between two groups was evaluated by Chi-square or Fisher exact test, and t-test or ANOVA.

Multivariable general linear mixed models (GLMMs) with respective gamma or binomial distribution and log-link function were used to obtain adjusted outcomes variations between BS and RS.

Sensitivity analysis: was done by propensity scores matching methods⁶ to test the robustness of results obtained from GLMMs.

RESULTS

- Majority of robotic lobectomy used RS (84.2%). (Table1)
- Patients who use RS are likely to increase the risk of bleeding by 2.5% compared to BS. Also, BS has equivalent clinical outcomes compared with RS in blood transfusion, air leak, and pneumothorax (Table 2 & 3)
- BS users were likely to save \$4,331 USD per thoracic inpatient procedure, compared to RS (p<0.001) (Table 4)
- BS users were likely to save 19 minutes per thoracic procedure compared to RS (p<0.001) (Table 4)
- No significant difference in length of stay between BS and RS. (Table 4)
- Sensitivity analysis showed similar results compared BS to RS. Table 3 & 4)

Table 1: Baseline characteristics in two groups

Covariates	BS (%)	RS (%)	P-value
Total (N= 4779)	15.53	84.17	
Age >=65	68.33	66.11	0.240
Male	45.15	41.05	0.037
Non-Hispanic			
White	63.61	70.75	<0.001
Medicare	65.63	65.32	0.374
Lung cancer	77.36	80.43	0.055
Lobectomy	55.93	61.28	0.006
CCI >= 3	67.12	63.34	0.049
Moderate/Major /Extreme APR severity	59.43	53.60	0.003
South Region	71.02	41.14	<0.001
Hospital in Urban	95.69	94.05	0.078
Bedside >=500	69.54	59.03	<0.001
Teaching hospitals	70.35	66.63	0.047
High volume hospitals	60.78	64.70	0.041
High volume surgeons	66.58	73.30	<0.001
Thoracic surgeons	40.57	57.74	<0.001
Discharge year 2022	51.48	52.54	0.596

Table 2: Unadjusted outcomes by type of staplers

Clinical outcomes		RS (N=4037) N(%)	BS (N=742) N(%)	P-value
Blood transfusion		1.7%	2.3%	0.27
Bleeding		5.4%	4.0%	0.14
Air leak		16.5%	16.7%	0.84
Pneumothorax		12.8%	11.3%	0.27
Bronchopleural fistula		0.12%	0.27%	0.34
Resources utilization		Mean(STD)	Mean(STD)	P-value
Inpatient cost (2022 USD)		\$28,020 (\$22,655)	\$24,083 (\$13,620)	<0.001
OR time (minutes)		230 (97)	216 (84)	<0.001
Length of Stay (Days)		4 (4.1)	4 (3.2)	0.15

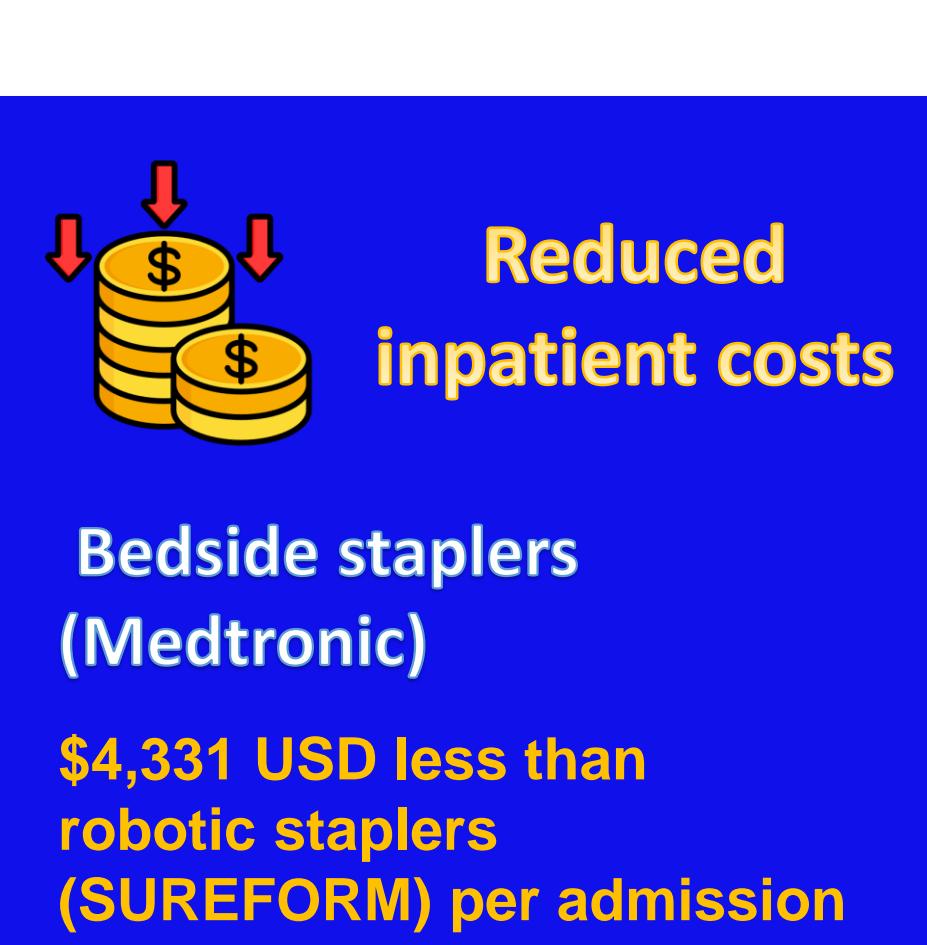
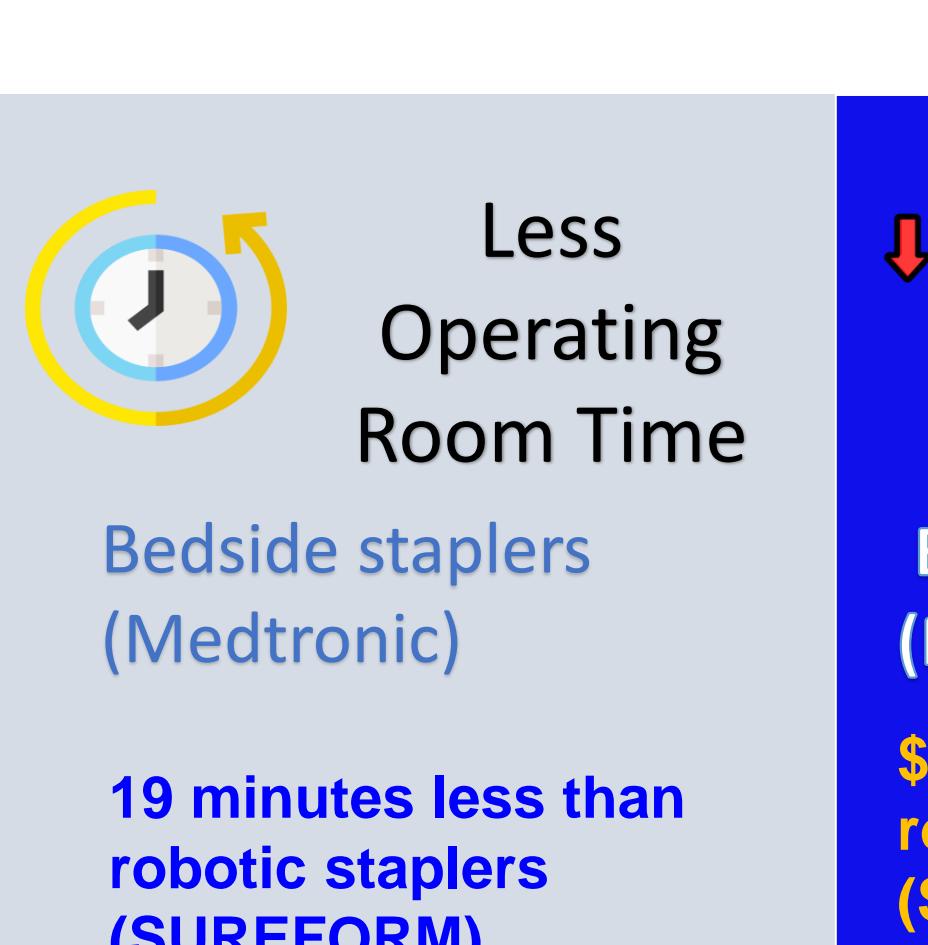
Table 3: Summary of GLMMs – Adjusted clinical outcomes and sensitivity analysis

Adjusted Rates (%) Reference: BS	Main Model – GLMMs ¹			Sensitivity analysis - PSM				
	RS (%)	BS (%)	Odds ratio (95% CI)	P-value	RS (%)	BS (%)	Odds Ratio (95% CI)	P-value
Blood Transfusion	1.8	2.0	0.87(0.49, 1.54)	0.64	3.1	2.3	1.36(0.72, 2.58)	0.336
Bleeding	5.6	3.1	1.93(1.24, 3.00)	0.003 ²	9.6	4.0	2.51(1.62, 3.90)	<0.001 ²
Air leak	16.9	14.7	1.22(0.95, 1.56)	0.112	20.1	16.7	1.25(0.96, 1.63)	0.094
Pneumothorax	13.0	10.5	1.29(0.99, 1.67)	0.059	13.9	11.3	1.28(0.93, 1.72)	0.137

¹Bronchopleural fistula did not include the multivariable GLMMs due to no or rare incidence in some subgroups; ²p-value < 0.05 showed statistical significance.

Table 4: Summary of GLMMs – Adjusted resources utilization and sensitivity analyses

Adjusted Resources Utilization	Main Model: GLMMs			Sensitivity analysis: PSM				
	RS (MEAN)	BS (MEAN)	Mean Differences (95% CI)	P-value	RS (MEAN)	BS (MEAN)	Mean Differences (95% CI)	P-value
Inpatient cost (2022 USD)	\$28,085	\$23,753	\$4,331 (\$3,362, \$5,301)	<0.001 ¹	\$29,547	\$24,083	\$5,464 (\$3,885, \$7,043)	<0.001 ¹
OR time (minutes)	231	212	19.1(12.3, 25.7)	<0.001 ¹	237.4	215.7	21.6(11.7, 31.6)	<0.001 ¹
LOS (days)	3.7	3.7	-0.01(-0.23, 0.21)	0.932	3.9	3.9	0.07(-0.3, 0.4)	0.705



¹p-value<0.05 showed statistical significance.

Abbreviation in all tables: RS: robotic staplers; BS: bedside staplers; OR: operating room; STD: standard deviation; GLMMs: general linear multivariate models; CI: confidence interval; PSM: propensity score matching;

3. Prior study included manual/powered staplers but did not provide details about the staplers, brand, or products. It may include products from JNJ, Medtronic, and/or other brands. This study included Medtronic staplers only in BS group.
4. The current study did not include conversion rate as an outcome because two studies (Servais et al., 2022 & Herrera et al., 2022)⁸⁻⁹ suggested that the conversion rate may not indicate worse outcomes.

CONCLUSIONS

Bedside Stapler is more effective and cost-saving than robotic staplers in thoracic robotic procedures

REFERENCES

1. E, H., et al., Hybrid uniportal robotic-assisted thoracoscopic surgery using video-assisted thoracoscopic surgery staplers: technical aspects and results. Ann Cardiothorac Surg, 2023. 12(1): p. 34-40.
2. Phillips J.D., et al., Robotic vs traditional stapler use in robotic portal anatomic lung resection. Mini-invasive Surgery, 2020;4:12.
3. Subotic, D., A. Hojiki, M. Wiese, and D. Lardinois, Use of staplers and adverse events in thoracic surgery. J Thorac Dis, 2019. 11(Suppl 9): p. S1226-S1223.
4. Marra, A. and A. Yankulov, The role of new staplers in reducing the incidence of air leak. J Thorac Dis, 2023. 15(2): p. 893-900.
5. Miller, D.L., et al., Impact of Powered and Tissue-Specific Endoscopic Stapling Technology on Clinical and Economic Outcomes of Video-Assisted Thoracic Surgery Lobectomy Procedures: A Retrospective, Observational Study. Adv Ther, 2018. 35(5): p. 707-723.
6. Austin, P., An Introduction to Propensity Score Methods for Reducing the Effects of Confounding in Observational Studies. Multivariate Behav Res, 2011. 46(3): p. 399-424.
7. Zervos, M., et al., Clinical and Economic Outcomes of Using Robotic Versus Hand-Held Staplers During Robotic Lobectomy. Innovations (Phila), 2021. 16(5): p. 470-476.
8. Herrera, L.J., et al., Pulmonary Open, Robotic, and Thoracoscopic Lobectomy study: Outcomes and risk factors of conversion during minimally invasive lobectomy. J Thorac Cardiovasc Surg, 2023. 166(1): p. 251-262 e3.
9. Selvam, E.L., et al., Conversion to Thoracotomy During Thoracoscopic vs Robotic Lobectomy: Predictors and Outcomes. Ann Thorac Surg, 2022. 114(2): p. 409-417.

CONTACT INFORMATION

I-Wen Elaine Pan: elaine.pan@medtronic.com