A Cost-Utility Analysis of the Transcutaneous OSIA[®] System Compared to Percutaneous Devices for Hearing Loss in Sweden

Ghinelli F¹, Sigurgeirsdóttir Liljenberg H², Steeds C¹, D'Ostilio D³, <u>Olsson M</u>² ¹Valid Insight, Macclesfield, England, UK, ²Cochlear Bone Anchored Solutions AB, Mölnlycke, Västergötland, Sweden, ³Cochlear Limited, Sydney, NSW, Australia

INTRODUCTION

- Hearing loss has far-reaching consequences, negatively affecting speech and language development, relationships, social interactions, education, employment, quality of life, mental health and independence at various stages of life¹⁻⁴
- Globally, more than 1.5 billion people experience a deterioration of hearing during their lifetime⁴
- Due to the aging population in Sweden and other developed countries, hearing loss is likely to become an increasingly prevalent disability¹
- Surgical bone-conducting hearing implants (BCHIs) provide a benefit to eligible patients with conductive hearing loss (CHL), mixed hearing loss (MHL), and single-sided deafness (SSD),⁵ when conventional hearing aids can no longer provide a benefit or are contraindicated^{6,7}
- BCHIs are categorised as percutaneous or transcutaneous based on their method of attachment to the patient. Because percutaneous devices have direct contact with the skull, there is greater potential for adverse skin reactions compared to transcutaneous devices⁵
- The Osia[®] System (Osia) is an active (the transducer is implanted under the skin) transcutaneous solution and is the first osseointegrated steady-state implant approved for people with CHL, MHL, and SSD and bone conduction hearing loss up to 55 dB⁸
- Selecting the optimal BCHI requires consideration of general indications, guidelines, safety, patient

METHODS (continued)

Table 3 – Costs

	Osia	Percutaneous devices	
Procedure	121,334 SEK	28,587 SEK	
Moderate complication	4,467 SEK		
Severe complication	20,060 SEK		
Explantation	12,408 SEK*	5,029 SEK [†]	
Reimplantation	121,334 SEK	28,587 SEK	

*Assuming 20 minutes procedure; †Assuming 5 minutes procedure

 In Sweden, no public willingness to pay (WTP) thresholds are available. Therefore, various thresholds were used to determine cost-effectiveness following the methodology identified by the Swedish Agency for Health Technology Assessment and Assessment of Social Services¹⁷

RESULTS

 Osia was associated with an increased cost of 79,293 SEK and increased QALYs of 0.73 compared to percutaneous devices, resulting in an incremental cost-effectiveness ratio of 108,318 SEK /QALY

preferences and costs

OBJECTIVES

The objective of this cost-utility analysis (CUA) was to assess the cost-effectiveness of treating CHL, MHL, and SSD patients with Osia compared to percutaneous implants over a lifetime horizon, from the perspective of the Swedish healthcare system

METHODS

- The analysis used a Markov model (Figure 1) with three health states, six-month cycles and a lifetime horizon (to 100 years of age). A half-cycle correction was used to prevent over or underestimation of the costs and benefits of treatment, which were both discounted at an annual rate of 3.0%⁹
- In the initial "with implant" state, patients were implanted with either Osia or a percutaneous device. In this state, patients could experience moderate or severe complications, or explantation (removal of the device potentially followed by re-implantation), which results in additional costs and patient burden
- Patients could transition to a "without implant" state based on a probability of non-use (e.g. patients who discontinue their device due to low effectiveness), and a probability of explantation without reimplantation due to a severe complication. No direct costs or risks of complications associated with implants were assigned to patients in the "without implant" state
- To estimate mortality, 2019 life expectancy data for Sweden was used from the World Health Organisation, assuming hearing loss did not impact mortality¹⁰

gained (Table 4)

Table 4 – Results

	Osia	Percutaneous devices
Total costs per patient	336,642 SEK	257,349 SEK
Total QALYs per patient	15.28	14.55
Incremental cost per patient	79,293 SEK	
Incremental QALYs per patient	0.73	
ICER	108,318 SEK/QALY	

ICER, incremental cost-effectiveness ratio; QALY, quality-adjusted life year

- A deterministic sensitivity analysis (DSA) showed that key drivers of the CUA were the baseline age, the cost of the Osia procedure, and the mean utility gain for Osia (Figure 2)
- In the DSA, all parameters were independently varied by +/-20% of the base-case parameter value

Figure 2 – Tornado diagram

- The model considered adult patients with hearing loss ≤55 dB and aged 59 years and older
- Utilities derived from the Health Utilities Index Mark III (HUI3) questionnaire were sourced from the literature and were used to calculate quality-adjusted life years (QALY) (Table 1)
- Individuals receiving an implant had an improvement in health-related quality of life that was assumed to not deteriorate over time, provided they continued to use their device

Table 1 – Health utilities

Health state	Utility	Reference
Baseline (without implant)	0.670	Brunner et al. 2024 ¹¹
Osia (mean change)	0.090	Brunner et al. 2024 ¹¹
Percutaneous devices (mean change)	0.048	Van Hoof et al. 202012

- Complications were divided into moderate complications, which were assumed to require a physician visit and conservative management, and severe complications, which required hospitalisation or revisional surgery (Table 2)
- The cost of each surgical procedure and the cost of management required to treat various complications were derived from the Swedish National Board of Health and Welfare¹³ (Table 3)

- Results of the probabilistic sensitivity analysis (PSA) showed that the probability of Osia being costeffective at a moderate cost per QALY WTP ranged from 43% (WTP equal to 100,000 SEK/QALY) to 100% (WTP equal to 500,000 SEK/QALY) (Figure 3)
- The cost per QALY was categorised as low (<100,000 SEK), moderate (100,000–499,999 SEK), high (500,000–1,000,000 SEK) or very high (>1,000,000 SEK) in the National Guidelines for cardiac care by the Swedish National Board for Health and Welfare^{17,18}

Figure 3 – Probabilistic sensitivity analysis results

QALY, quality-adjusted life year

DISCUSSION AND CONCLUSIONS

- This model was developed to compare the Osia active transcutaneous device with percutaneous implants for the treatment of CHL, MHL, and SSD in Sweden
- The results show that Osia is cost-effective compared to percutaneous devices over a lifetime horizon at relevant WTP thresholds in Sweden
- Both types of implants improve hearing outcomes; however, transcutaneous devices (such as Osia)

Table 2 – Complication probabilities

Intervention	Complication	Six-month probability	References
Osia	Moderate complication	1.35%	Key et al. 2023 ¹⁴
	Severe complication	1.80%	Key et al. 2023 ¹⁴
	Explantation	6.10%*	Key et al. 2023 ¹⁴
	Reimplantation	78.04%†	Crowder et al. 2021 ¹⁵
	Non-use	2.60%	Cowan et al. 2023 ¹⁵
Percutaneous devices	Moderate complication	2.72%	Teunissen et al. 2024 ¹⁶
	Severe complication	1.93%	Teunissen et al. 2024 ¹⁶
	Explantation	10.12%*	Teunissen et al. 2024 ¹⁶
	Reimplantation	83.24%†	Teunissen et al. 2024 ¹⁶
	Non-use	0.58%	Teunissen et al. 2024 ¹⁶
*Conditional to severe complications; †Conditional to explantation			

have lower rates of skin reactions than percutaneous devices, which use protruding, skin-penetrating abutments

- The differences in utility scores may be linked to the different complication rates (reflected in the "pain" attribute) and patient preferences ("emotion" attribute); however, not all studies measuring HUI3 report scores for all attributes and comparisons were therefore not possible
- The main limitation of this model is the absence of a head-to-head study comparing Osia and percutaneous devices, and consequently, inputs were sourced from different clinical studies
- Lastly, no differentiation was considered for patients with CHL, MHL, or SSD due to the overall lack
 of disaggregated evidence for the individual conditions

REFERENCES				
 Cunningham et al. N Engl J Med. 2017 Niemensivu et al. Int J Audiol. 2015 Nordvik et al. BMC Ear Nose Throat Disord. 2018 World Health Organization. who.int. 2021 Ellsperman et al. Audiol Res. 2021 Briggs et al. Otol Neurotol. 2022 	 Cochlear Ltd. cochlear.com. 2024 Williams et al. J Comp Eff Res. 2023 World Health Organization. who.int. 2019 Brunner et al. Mark Access Health Policy. 2024 van Hoof et al. Front Neurol. 2020 Swedish National Board of Health and Welfare 	 14. Key et al. <i>Laryngoscope</i>. 2024 15. Crowder et al. <i>Am J Otolaryngol</i>. 2021 16. Teunissen et al. <i>Otol Neurotol</i>. 2024 17. Swedish Agency for Health Technology Assessment and Assessment of Social Services. 		
7. Mylanus et al. <i>Otol Neurotol</i> . 2020	socialstyrelsen.se. 2024	18. Gumbie et al. BMC Health Serv Res. 2021		

ISPOR EUROPE 2024, Barcelona 17 – 20 November 2024

This study was funded by Cochlear Limited Author conflicts of interest: Sigurgeirsdóttir Liljenberg H, Olsson M and D'Ostilio D are employees of Cochlear Bone Anchored Solutions AB and Cochlear Limited, respectively. Ghinelli F and Steeds C are employees of Valid Insight (part of the Bioscript Group), a consulting agency funded by Cochlear Limited to conduct the research

Disclosures