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•Health economics: the use of resources to efficiently improve the health of a population3,4

•Outcome research: any research that attempts to measure the effectiveness, efficiency, equality, and patient-centredness of healthcare5,6

•Based on the Academy of Managed Care Pharmacy definition of outcomes research, we provided further HEOR guidance to reviewers based on 3 main types:6

 – Humanistic – patient-/caregiver-reported outcomes (PROs/CROs)
 – Clinical – real-world or statistical comparison of treatments, e.g. indirect treatment comparisons
 – Economic – cost-effectiveness evaluations

•The type of study was not important, only whether HEOR outcomes were reported
 – Under this definition, any randomized controlled trial that reported PROs was included
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• Expert-trained classifiers were able 
 to identify publications reporting 
 HEOR outcomes using the abstract 
 and title alone
• Reviewers tended towards exclusion 
 (higher false-negatives), whereas the 
 classifiers tended towards inclusion 
 (lower false-negatives)
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TRAIN database developed
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•Embase and PubMed
•DistillerSR literature review 

software was populated with HEOR 
and non-HEOR publications from 
2 clinical indications

•Reviews and publications without 
an abstract were excluded

•Experienced reviewers (n = 7) classified 
publications as HEOR or not

•“Are HEOR data reported in the 
title/abstract? Answer: "yes"
or "no"”

•Conflicts were resolved via online/verbal 
discussion N = 245

•Binary classifier algorithm ‘learns’ 
from experienced reviewers

•The classifier was trained with 
unconflicted data

•The trained classifier was applied
to TEST

•Reviewers without HEOR experience 
(n = 5) review the same publications 
as the classifier N = 551

•Review conflicts in TEST database (n = 122)
•Calculate false-negative and

false-positive rate
•Who was ‘correct’, based on

the definition provided?
– This was used to examine false-
   negative (e.g. incorrectly excluded)
   and false-positive (e.g. incorrectly
   included) characteristics

•Descriptive statistics are reported

Limitations
• Only those publications in conflict were re-examined; therefore it is possible that some 

false-positive/false-negative results occured via 2 expert reviewers, or both the classifier and 
non-expert reviewer, selecting the same incorrect option (i.e. erroneously agreeing)

• While 2 disparate indications were selected to improve generalizability, it is possible that our findings 
would not be applicable to all disease areas and patient populations

• Studies not typically classed as HEOR may have been included if they reported relevant outcomes, 
e.g. clinical trials that include PROs and measures of quality of life

• During this project, we became aware of the differences in how HEOR is defined, depending on 
individual experience, e.g.
  – Those with market access experience may see contribution to reimbursement discussions as a
    defining feature 

Classifiers identified more publications as HEOR Reviewers were correct on 2/3 of conflicts
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DAISY’s algorithm classification

Reviewing literature can be time-consuming
This can negatively impact the accurate inclusion of Health 
Economics and Outcomes Research (HEOR) publications

HEOR is a wide-ranging, descriptive, term
Definitions and understanding of the term can vary

Machine-learning classifiers (algorithms that categorize 
data) could assist
Through successful identification of HEOR publications for inclusion

✓✓

Human error rate can be 21%
Studies have shown that human error can be common due to 
reviewer fatigue1 and inter-reviewer variability2

✓✓

The term “HEOR” has evolved over decades 
and can be  interpreted differently 
depending on use, e.g. demonstrating 
cost-effectiveness for payers, or improving 
quality of life for patients; therefore the 
definition of HEOR can be vague and can 
vary depending on its context.

39%
61%

Statistics
Total references, n  472
No 249 (52.75%)
Yes 223 (47.25%)

Balanced accuracy score  0.55 (±0.09)
Recall score 0.72 (±0.20)
F1 score  0.75 (±0.08) 

Classifier question  Does this publication report HEOR data?

•Low false-negatives are desirable – it’s better to include more hits at screening than 
risk excluding relevant publications

•Classifier algorithms can improve the efficiency and reliability of literature review 
development improve the efficiency and timelines of literature review development

•Future analyses will work on improving the lexicon of “HEOR” search terms for
higher specificity

Conclusions

Objective
To test a classifier algorithm trained to identify HEOR publications based on title and abstract, using the DistillerSR literature review platform
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