Association Between Metformin Use and Major Adverse Cardiac Events in Multiple Myeloma Patients With Type 2 Diabetes Mellitus Receiving Carfilzomib: A Population-Based Cohort Study

Jiyeon Lee^{1, 2}, Miryoung Kim^{1,2}, Hyun Jin Han^{1,2}, Hae Sun Suh^{1, 2, 3}*

1 Department of Regulatory Science, Graduate School, Kyung Hee University, Seoul, Republic of Korea 2 Institute of Regulatory Innovation through Science, Kyung Hee University, Seoul, Republic of Korea 3 College of Pharmacy, Kyung Hee University, Seoul, Republic of Korea.

Corresponding author

INTRODUCTION

- Although carfilzomib is an effective treatment for multiple myeloma (MM), its cardiotoxicity has been a concern.
- There have been promising laboratory findings on the protective potential of metformin against carfilzomib-induced cardiotoxicity.

OBJECTIVE

To evaluates the real-world effectiveness of metformin in reducing MACE in MM patients with type 2 diabetes mellitus (T2DM) receiving carfilzomib treatment.

METHOD

Study design
Data source

Population-based retrospective cohort study
Health Insurance Review and Assessment Service database

Population

Adult MM (ICD-10 C90) patients with T2DM (ICD-10 E11) who initiated carfilzomib including regimens

Exclusion Criteria

Comparison

Outcome

Statistical

Analysis

Patients with advanced chronic kidney disease (stage 4, 5)
Patients with recent history of major cardiac adverse event (MACE)

Metformin User

At least 1 prescription both within 6 months prior to and

Metformin Non-user

No prescription within 6 months prior to and throughout carfilzomib treatment

during carfilzomib treatment

Time to first MACE and its individual components (AMI, IS, HF and CV death) during carfilzomib treatment period

- Inverse probability treatment weighting to adjust for baseline difference
- Fine-Gray model to account for competing mortality risks

RESULTS

Table 1. Baseline characteristics

Characteristics	Metformin Non-user N=145	Metformin User N=294	P-value
Age, mean (sd)	69.1 (7.3)	67.6 (8.1)	0.0545
Female, n (%)	57 (39.3)	126 (42.8)	0.4784
Medial aid, n (%)	10 (6.9)	12 (4.1)	0.2036
LOT, mean (sd)	2.9 (1.2)	2.8 (1.2)	0.5673
CCI, mean (sd)	4.8 (3.2)	4.6 (3.0)	0.3921
Regimen, n (%) KRd Kd	71 (49.0) 74 (51.0)	165 (56.1) 129 (43.9)	0.1572
Previous treatment, n(%) Stem cell transplant Proteasome inhibitors Immunomodulatory drugs CD38 antibody	53 (36.6) 99 (68.3) 76 (52.4) 8 (5.5)	121 (41.2) 191 (65.0) 138 (46.9) 6 (2.0)	0.3536 0.4909 0.2804 0.0512

LOT, Line of therapy; CCI, Charlson comorbidity index

- A total of 439 MM patients with T2DM treated with carfilzomib were categorized based on metformin use. The incidence of MACE per 100 person-year was 22.8 in metformin users and 26.3 in non-users.
- Using IPTW and Fine-Gray model analysis, metformin use was not associated with a significant reduction in the incidence of MACE (HR 0.861; 95% CI 0.628–1.180). Although no significant differences were observed in the individual components of MACE either, it is noteworthy that there was a borderline significant reduction in heart failure risk (HR 0.694, p=0.057).

Table 2. Incidence rate per 100 person-years

Outcome	Metformin Non-user	Metformin User
MACE	26.3	22.8
Acute Myocardial Infarction	0.0	1.2
Stroke	3.8	6.1
Heart Failure	20.8	14.1
Cardiovascular death	3.7	2.8

ICD-10 codes for outcome – Acute Myocardial Infarction I21, I22; Stroke I63, I64; Heart Failure I50; Cardiovascular death I461, I469

CONCLUSIONS

Our findings do not support a significant cardioprotective effect of metformin in reducing overall MACE incidence in MM patients with T2DM on carfilzomib but suggest a potential for reducing heart failure risk.

REFERENCES

Efentakis P et al. *Int J Mol Sci*, 2021;22(20):10956 Georgiopoulos G et al. *JACC:CardioOncology*, 2023; 5(1):1-21

ACKNOWLEDGMENT

This research was supported by grants from the Ministry of Food and Drug Safety in 2024 (21153MFDS601, RS-2024-00331719) and by the National Research Foundation of Korea (NRF) grant funded by the Korean government (MSIT) (RS-2024-00345981).