

Network analysis of IADB dataset

Implementing a drug prescription network to evaluate psychiatric polypharmacy Aly Lamuri Murdani

A bit about me

Aly Lamuri Murdani

MSc of Computational Neuroscience and Neuroinformatics. Currently pursuing a doctoral degree in Universitas Indonesia and Rijksuniversiteit Groningen. Proficient in scripting with R also comfortable in scripting with python and Google script. **Highly interested in researching psychology and medicine**.

Introduction

Chronic psychiatric disorders lead to polypharmacy

What influences drug prescription?

Physician's prescribing habits

Patient-physician relationship

Pharmaceutical market

Decision-makingprocess

Challenges in medication surveillance³

Group results by demographic factors

Identify increased mortality/morbidity

Relate to health outcomes and services

Describe the importance of polypharmacy

¹Kessler RC, Aguilar-Gaxiola S, Alonso J, Chatterji S, Lee S, Ormel J, Üstün TB, Wang PS. The global burden of mental disorders: an update from the WHO World Mental Health (WMH) surveys. Epidemiology and Psychiatric Sciences. 2009 Mar;18(1):23–33. ²Delara M, Murray L, Jafari B, Bahji A, Goodarzi Z, Kirkham J, Chowdhury M, Seitz DP. Prevalence and factors associated with polypharmacy: a systematic review and meta-analysis. BMC geriatrics. 2022 Jul 19;22(1):601.

³Sirois, C., Tannenbaum, C., Gagnon, ME. et al. Monitoring polypharmacy at the population level entails complex decisions: results of a survey of experts in geriatrics and pharmacotherapy. Drugs Ther Perspect 32, 257–264 (2016)

Polypharmacy is a complex and interlinked medication use

		Adjacency Matrix				Graph	Drug Prescri	ption	otion Net	
				[1]	[2]	[3]				
Daily pre	escription data		Fluoxetine [1]	0	1	1	1 2		[1]	
Patient	Medication	Ы	Metformin [2]	1	0	1		Fluoxetine [1]	1	
Pl	Fluoxetine		Amlodipine [3]	1	1	0	3	Metformin [2]	2	
Ρl	Metformin			[1]	[2]	[3]		Amlodipine [3]	1	
P1	Amlodipine	D2	Fluoxetine [1]	0	1	0				
P2	Fluoxetine	٢Z	Metformin [2]	1	0	0	1 2			
P2	Metformin		Amlodipine [3]	0	0	0				
P3	Fluoxetine			[1]	[2]	[3]				
			Fluoxetine [1]	1	0	0				
		гэ	Metformin [2]	0	0	0	1		3	5
			Amlodipine [3]	0	0	0				

Askar M, Cañadas RN, Svendsen K. An introduction to network analysis for studies of medication use. Research in Social and Administrative Pharmacy. 2021 Dec 1;17(12):2054–61.

Bazzoni G, Marengoni A, Tettamanti M, Franchi C, Pasina L, Djade CÓ, Fortino I, Bortolotti A, Merlino L, Nobili A. The drug prescription network: A system-level view of drug co-prescription in community-dwelling elderly people. Rejuvenation Research. 2015 Apr 1;18(2):153–61.

Cavallo P, Pagano S, Boccia G, De Caro F, De Santis M, Capunzo M. Network analysis of drug prescriptions. Pharmacoepidemiology and drug safety. 2013 Feb; 22(2):130–7.

What can a network-based approach offer?

Cavallo (2013)

- Complement inferential statistics in pharmacoepidemiology
- Extract and isolate co-prescription for detailed analysis
- Demonstrate that high connections only occur in a few medications
- Evaluate physician's prescription habit

Future Direction

Encourage network science application for public health evaluation

Bazzoni (2015)

- Highlight dynamic changes in medication uses
- Reflect changes in physician's prescription habit
- Display the co-prescription trends of selected medications
- Extract and isolate distinct clusters in a network

Future Direction

Evaluate medicine prescription and expenditure using a network-based approach

Askar (2021)

- Observe the influence of multiple drugs using centrality measures
- Suggest centrality measures for variable selection
- Identify clusters of patients with similar co-prescription patterns
- Detect topological differences by comparing different networks

Future Direction

Apply network analysis in social pharmacy and pharmacoepidemiology

Askar M, Cañadas RN, Svendsen K. An introduction to network analysis for studies of medication use. Research in Social and Administrative Pharmacy. 2021 Dec 1;17(12):2054-61

Bazzoni G, Marengoni A, Tettamonti N, Franchi C, Pasina L, Djade CD, Fortino I, Bortolotti A, Merlino L, Nobili A, The drug prescription network: A system-level live of drug co-prescription in community-dwelling elderly people. Rejuvenation Research. 2015 Apr 1;18(2):153–61.

DPN captures the dynamic of polypharmacy regimens

"What does eigenvector centrality tell us about polypharmacy in psychiatric disorders?"

Askar M, Cañadas RN, Svendsen K. An introduction to network analysis for studies of medication use. Research in Social and Administrative Pharmacy. 2021 Dec 1;17(12):2054–61.

Methods

Source of data and pre-processing steps

Data from IADB.nl								
ID	ATC	DDD	Date	Period				
P1	A07EC02	1	2018-01-01	15				
P1	G02BA03	1800	2018-01-01	1800				
P1	B03BA03	0.8	2018-01-01	13				
P2	A07EC02	0.7	2018-01-01	12				
P2	B03BA03	100	2018-01-01	5				
PN	A11CC05	0.9	2022-12-31	10				

Inclusion:

- Aged 18-65 years old
- Received N05B/N06A at least once
- Data from 2018 to 2022

Grouping by ATC level 1 3 4

university of groningen

Network centrality as a score for each medication

Operational Definition

Centrality Indicates how influential a medication is in a network

Eigenvector Centrality Measures how well-connected a medication is to highly co-prescribed medications

Centrality measures the relative importance of the medications by assigning a score to each of them

 $\lambda c_i = \sum_{j \neq i} v_{j,i} \cdot c_j$ $\sum c_i = 1$

 λ : Associated eigenvalue c_i : Eigenvector centrality of node i $v_{j,i}$: Connection from j to i

Askar M, Cañadas RN, Svendsen K. An introduction to network analysis for studies of medication use. Research in Social and Administrative Pharmacy. 2021 Dec 1;17(12):2054-61.

Exploratory data analysis procedure

The time points present with daily cyclical patterns

Aggregating the data to remove daily cyclical patterns

Univariate Analysis

Mean STD Median IQR		Number of Claims	Eigenvector Centrality
STD Median IQR	Mean		
Median IQR	STD		
	Median		
L	IQR		
L			
	[e_	ţ.	

Determining relative importance of each medications

university of groningen

Results and Discussion

Patients with at least one claim of N05B/N06A from 2018 to 2022

Year	Number of	Age Mean		Age SD		
	Male	Female	Male	Female	Male	Female
2018	42,164 (36.6%)	73,124 (63.4%)	48.72	48.02	12.33	12.80
2019	42,427 (36.7%)	73,109 (63.3%)	49.26	48.54	12.62	13.02
2020	42,010 (36.6%)	72,700 (63.4%)	49.77	49.15	12.79	13.16
2021	42,016 (36.7%)	72,532 (63.3%)	50.15	49.55	13.04	13.42
2022	39,464 (36.7%)	67,930 (63.3%)	50.82	50.38	13.12	13.50

Distribution of prescription claim from 2018 to 2022

Dav	Number of Claims							
Day	Mean (SD)	Median (IQR)	Min	Max				
Monday	7,222.42 (999.8)	7400 (524.0)	2935	9194				
Tuesday	6,793.16 (640.8)	6821 (483.0)	3164	8620				
Wednesday	6,865.45 (601.1)	6852 (566.0)	3915	8503				
Thursday	7,109.15 (592.1)	7136 (579.0)	4156	8608				
Friday	6,726.46 (535.5)	6771 (597.0)	3589	8712				
Saturday	2,807.73 (174.1)	2803 (169.0)	2293	4533				
Sunday	2,990.58 (166.4)	3009.5 (161.3)	2381	3478				

Time-series decomposition results

The number of medication claims of antidepressants

university of groningen

Why is it necessary to decompose the time-series?

Seven medications had a high relative importance

Medication Group	N Claims	Eigenvector Ce	Dose	
Medication Group	2018 - 2022	Mean [95% Cl	Mean [SD]	
Alimentary and metabolism	11,512,424	0.2074 [0.2066,	0.2081]	0.60 [0.33]
Cardiovascular	9,778,030	0.1914 [0.1901,	0.1926]	0.54 [0.31]
Respiratory	5,492,900	0.0895 [0.0890,	0.0899]	0.66 [0.33]
Antidepressants	6,108,776	0.0894 [0.0891,	0.0896]	0.54 [0.31]
Blood	2,908,944	0.0827 [0.0821,	0.0833]	0.69 [0.39]
Analgesics	2,557,528	0.0499 [0.0494,	0.0504]	0.42 [0.26]
Anxiolytics	2,644,309	0.0443 [0.0438,	0.0449]	0.46 [0.29]

university of groningen

What does this study offer?

Strength

- Network analysis is a complementary approach to the general practice of inferential statistics
- DPN is proven useful as a data exploration and variable selection strategy

Limitation

- IADB.nl provides prescription registry data, not drug administration nor diagnosis
- We need a way to standardize DDD when excluding the record
- Constructing a DPN is computationally expensive

Future Direction

- Extract entries with high eigenvector centrality to assess individual patient's period of use
- Formulate a bipartite network to link medication with diagnosis or prescribing habits

Take-home messages

DPN is a complementary approach to the general practice of inferential statistics

Network analysis methodology is a powerful tool to address highly connected data

More studies incorporating network analysis of medication uses are encouraged

university of groningen

SELECT question FROM slide WHERE slide_number = x

Appendix

Time-series decomposition with singular spectrum analysis

- The weekly time-series is embedded as a Hankel matrix
- The matrix is then decomposed using singular value decomposition
- SSA in a nutshell:
 - We can extract the eigenvalue and eigenvectors by performing matrix multiplication to its transposed form
 - Then we can extract the factor vectors
 - Finally, we get eigentriples as a row-wise decomposition of the Hankel matrix
- We performed a sequential SSA to decompose complex periodic patterns:
 - Fit SSA model to reconstruct the first eigentriple, use the lowest possible L, in our case L = 52
 - Extract the residual
 - Fit a second SSA model to the residual, use the highest possible L, theoretically L = N/2

Problems with raw time-series data

The green label signifies medications affecting the nervous system, coded under N01-N07 in WHOCC ATC

Reconstructing using the trend, F1, and F2

The green label signifies medications affecting the nervous system, coded under N01-N07 in WHOCC ATC

university of groningen