

Cognitive Behavioral Therapy for Insomnia (CBT-I) Compared to Z-Drugs for the Treatment of Insomnia in the Elderly: A Cost-Effectiveness Analysis

Jonathan N. Cloughesy

OBJECTIVE

Insomnia is a prevalent and costly condition in the United States, responsible for over USD\$100 billion in annual spending. Recent guideline changes have established cognitive behavioral therapy for insomnia (CBT-I) as first-line treatment for insomnia. Despite this, the most prevalent treatment for insomnia remains pharmacological agents known as Z-drugs. The objective of this economic evaluation is to compare the cost-effectiveness of CBT-I with Z-drugs and no treatment to inform payers, policymakers, providers and patients about the value provided by these treatments.

METHOD

- Model Type:** Markov model
- Comparators:** CBT-I vs. Z-drugs and no treatment
- Target population:** Adults ages 65 and older in the United States
- Model Structure:** 5 mutually exclusive health states: Insomnia, Insomnia with fall-related hospitalization (FRH), Remission, Remission with FRH, Death
- Time Horizon:** 15 years
- Cycle Length:** 6 weeks
- Perspective:** US Medicare
- WTP Threshold:** \$100,000/QALY

Costs (2024 USD):

- Initial clinician visit (treatment initiation)
- Direct cost of treatment
- Utilization from fall-related hospitalizations
- Discounted at 3% annually

Outcomes:

- Quality-adjusted life years (QALYs) for treated insomnia, untreated insomnia, and remission
- Discounted at 1.5% annually

Uncertainty Analyses:

- Probabilistic and deterministic sensitivity analysis conducted to test model assumptions and robustness

MODEL OVERVIEW

Base Case: 65-y/o male	Discounted Costs	Life Years	Discounted QALYs	ICER vs untreated	INMB vs untreated	ICER vs Z-drugs	INMB vs Z-drugs
Untreated	\$614	7.07	2.16	-	-	-	-
Z-drugs	\$935	6.81	2.26	\$3,233/QALY	\$9,625	-	-
CBT-I	\$3,601	7.07	2.38	\$13,651/QALY	\$18,282	\$22,333/QALY	\$9,270
Probabilistic Sensitivity Analysis	Discounted Costs	Life Years	Discounted QALYs	ICER vs untreated	INMB vs untreated	ICER vs Z-drugs	INMB vs Z-drugs
Untreated	\$612	3.93	2.15	-	-	-	-
Z-drugs	\$937	3.77	2.25	\$3,241/QALY	\$9,701	-	-
CBT-I	\$3,603	3.86	2.37	\$13,422/QALY	\$18,682	\$21,750/QALY	\$9,593

MODEL INPUTS

Variable	Base-Case Value
Transition parameters	
Insomnia Remission (untreated)	1.2%
Insomnia Remission (treated with Z-drugs)	7.2%
Insomnia Remission (treated with CBT-I)	38.7%
Insomnia Recurrence	1.9%
Fall-related hospitalization (FRH)	Age and sex-dependent
Odds ratio of FRH if untreated	1
Odds ratio of FRH with Z-drugs	1.24
Odds ratio of FRH with CBT-I	1
Readmission rate after FRH	23.4%
Mortality after FRH	3.3%
Mortality rate (MR)	Age and sex-dependent
Odds ratio of MR if untreated	1
Odds ratio of MR if with Z-drugs	1.59
Odds ratio of MR if with CBT-I	1
Cost Inputs	
Fall-related hospitalization	\$29,114.76
Generic Z-drug / cycle (42 tablets)	\$1.20
Z-drug dispensing fee	\$12.45
CBT-I / cycle	\$723.00
Initial clinician visit (primary care)	\$90.88
Health Utility Inputs	
Remission	0.72
Insomnia receiving treatment	0.66
Insomnia left untreated	0.63
Disutility from fall-related hospitalization	-0.20

RESULTS

- CBT-I and Z-drugs are both more cost-effective than no treatment above low WTP thresholds
- CBT-I is more cost-effective than Z-drugs above a WTP threshold of ~\$25,000
- The cost-effectiveness of CBT-I increases with age and is higher for women than men at older age (likely due to increased FRH risk in women)

LIMITATIONS

- Simplifying assumptions include comparator-independent recurrence rates and continued CBT-I utilization among non-responders
- Patients are often treated with Z-drugs and CBT-I simultaneously. Evaluating the cost-effectiveness of combined treatment would be informative
- In addition, there are substantial non-medical costs resulting from insomnia that are not incorporated into this model
- Model extensions incorporating simultaneous treatment options and a societal perspective framework may be warranted

ACKNOWLEDGMENTS

Thank you to Dr. William Padula and my Health Economics PhD cohort for providing valuable guidance and feedback throughout this project.