

Reducing health inequality of introducing SGLT2i therapy in a real-world type 2 diabetes population with diverse patient characteristics: A distributional cost-effectiveness analysis

Kah Suan Chong¹, Chun-Ting Yang¹, Chi-Chuan Wang^{3,4,5}, Huang-Tz Ou^{1,6}, Shihchen Kuo^{1,7}

¹Institute of Clinical Pharmacy and Pharmaceutical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan,²Division of Pharmacoepidemiology and Pharmacoeconomics, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, United States, ³School of Pharmacy, College of Medicine, National Taiwan University, Taipei, Taiwan, ⁴Graduate Institute of Clinical Pharmacy, College of Medicine, National Taiwan University, Taipei, Taiwan, ⁵Department of Pharmacy, National Taiwan University Hospital, Taipei, Taiwan, ⁶Department of Pharmacy, College of Medicine, National Cheng Kung University, Tainan, Taiwan, ⁷Division of Metabolism, Endocrinology & Diabetes, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, Michigan, United States

Background and objective

- Despite emerging evidence suggesting multiple health benefits of sodium-glucose cotransporter 2 inhibitors (SGLT2is) in patients with diverse characteristics¹⁻³, whether health inequality exists after widely adopting SGLT2 is in modern clinical practice remains unclear.
- We sought to conduct the distributional cost-effectiveness analyses (DCEAs) of using SGLT2 is versus dipeptidyl peptidase 4 inhibitors (DPP4 is) by individual characteristics among Taiwanese patients with type 2 diabetes (T2D).

Methods

Cost-effectiveness analysis:

A state-transition microsimulation model comprised of cardiovascular events from a healthcare sector perspective

Modelling health inequality impacts⁵⁻⁷

- **Equally-distributed-equivalents health (EDEH)**
- Inequality aversion index: 10.95⁸

Population health equity (QALYs): Difference between

over 5 years of simulation with annual cycle length⁴.

Target patient subgroups¹⁻³

- Age: <65 years vs. \geq 65 years
- eGFR: \geq 90 ml/min/1.73m² vs. 60 \leq eGFR<90 2) $ml/min/1.73m^2$
- HbA1c: <8.5% vs. ≥8.5% 3)
- BMI: $<30 \text{ kg/m}^2 \text{ vs.} \ge 30 \text{ kg/m}^2$ 4) Interventions:
- SGLT2is vs. DPP4is

Health in each group: simulate the QALYs of each subgroup using electronical health records in NCKUH and NTUH and extrapolated to nationwide Taiwanese T2D populations

Net health benefits (NHB) 2)

- Health opportunity cost: 1 times GDP per capita in Taiwan
- Proportion of patients receiving SGLT2is: 16% (published literature⁹ derived from nationwide) Taiwanese T2D populations)

 \checkmark

population Δ EDEH and population ΔNHB

> Sensitivity analyses varied by:

- Inequality aversion index
- Health opportunity cost
- Patients receiving SGLT2is (%)

Abbreviations: BMI, body mass index; eGFR, estimated glomerular filtration rate; HbA1c, glycated hemoglobin; NCKUH, National Cheng Kung University Hospital; NTUH, National Taiwan University Hospital; QALYs, quality-adjusted life years.

Results

Table 1. Results of base-case distributional cost-effectiveness analysis

Subgroup	Effectiveness (QALYs)	Population EDE (QALYs)	Population ΔEDE (QALYs)	Individual ΔNHB (ΟΔΙΧς)	Weighted ∆NHB (QALYs)	Population ΔNHB (ΟΔIVs)	Population health equity (QALYs)
Age (<65 years / \geq 65 years) (N ⁺ =432.247: n1/n2 ⁺ =305.767/126.480)							
SGLT2i	4.49 / 4.21	6,427,205 [¶]	153,790	-0.004/	-0.006¶	2,778	151,012
DPP4i	4.47 / 4.07	6,273,415¶		-0.008			
eGFR (\geq 90 ml/min/1.73m ² / 60 \leq eGFR<90 ml/min/1.73m ²) (N ⁺ =406,002; n1/n2 [‡] =306,399/99,603)							
SGLT2i	4.46/4.31	6,067,243¶	77,562	-0.001/	-0.005¶	2,010	75,552
DPP4i	4.42/4.24	5,989,681¶		-0.020			
A1c (<8.5% / ≥8.5%) (N ⁺ =432,247; n1/n2 [‡] =269,720/162,527)							
SGLT2i	4.41/4.42	6,558,735¶	91,212	-0.008/	-0.008¶	3,302	87,910
DPP4i	4.34 / 4.37	6,467,523¶		-0.006			
BMI (<30 kg/m ² / ≥30 kg/m ²) (N ⁺ =432,247; n1/n2 [‡] =310,984/121,263)							
SGLT2i	4.40 / 4.45	6,572,943¶	91,507	-0.009/	-0.008¶	3,391	88,116
DPP4i	4.33 / 4.40	6,481,436¶		-0.006			

With adopting SGLT2is over DPP4is, the population incremental NHB ranged from 2,010 QALYs (eGFR subgroups) to 3,391 QALYs (BMI subgroups) and the health inequality ranged from 75,552 QALYs (eGFR subgroups) to 151,012 QALYs (age subgroups), suggesting the enhancement of both efficiency and equity from using SGLT2is across subgroups compared to DPP4is (**Table 1**).

⁺N represents the number of SGLT2i and DPP4i new users obtained from a nationwide cohort study in Taiwan between 2016 and 2019⁹.

‡The proportions of each subgroup (e.g., age<65 and ≥65 years) are estimated by the total patient number of each subgroup (e.g., age<65 years) divided by the total population of whole group (e.g., age group) in two institutions (i.e., National Cheng Kung University Hospital and National Taiwan University Hospital). After then, the number of total SGLT2i and DPP4i users (N) multiplied by the proportion of corresponding subgroup will generate the n1 and n2. **(b)** 16,000

¶The estimates were derived from the pooled cohort of each subgroup.

Figure 1. Health equity plane used to visualize the results of distributional cost-effectiveness analysis

Results of sensitivity analyses (Figure 2) were consistent with the primary findings.

Discussion

Beyond traditional factors (e.g., social economic status) which might not be of concern under a universal health care setting, we focused health equity issues for clinically or biologically vulnerable patient populations.

The increase in the number of patients receiving SGLT2is increased incremental NHB, which provides supporting evidence to encourage the adoption of SGLT2i therapy for eligible patients and thus alleviates its underuse in current practice.

Future studies that create an explicit inequality aversion index and health opportunity cost

using age subgroups for illustration: (a) inequality aversion index = 10.95 (b) inequality aversion **index = 2.0441**¹⁰

specific to our case (e.g., focusing on clinical characteristics) are warranted.

Conclusions

Adopting SGLT2 is over DPP4 is would increase population health and reduce health inequality across real-world T2D patients with diverse clinical characteristics.

6)

8)

A classic cost-effectiveness analysis in conjunction with DCEAs could enhance the health technology re-assessment of new technologies in real-world \checkmark populations to provide evidence on guiding the selection and prioritization of treatment options and optimizing the allocation of healthcare resources.

Munier et al. Pharmacoeconomics 2023; 41(8): 1011-25.

10) Kot et al. Equilibrium Quarterly Journal of Economics and Economic Policy 2022; 17(2): 261-316.

7) Muir et al. *Clinicoecon Outcomes Res* 2024; 16: 581-96.

Robson et al. Health Econ 2017; 26(10): 1328-34.

9) Yen et al. JAMA Netw Open 2023; 6(12): e2348431.

References:

- 1) Iris et al. *Diabetes Obes Metab* 2021; 23(10): 2207-14.
- 2) Young et al. *Commun Med (Lond)* 2023; 3(1): 131.
- Birkeland et al. Lancet Diabetes Endocrinol 2017; 5(9): 709-17.
- 4) Yang et al. *Cardiovasc Diabetol* 2024; 23(1): 244.
- Learning about economic evaluation and heath inequality. 5)
 - https://www.york.ac.uk/che/research/equity/economic evaluation/. Accessed on 1 March, 2024.

Contact information: kahsuan102@gmail.com