Cost-effectiveness of V114 (PCV15) in active immunization of the pediatric population for the prevention of pneumococcal disease in France

Breau-Brunel M¹, Farge G¹, Bensimon L¹, Malik T², Carette J³

- 1: MSD France, Puteaux, France
- 2: Merck & Co., Inc., Rahway, NJ, USA
- 3: Public Health Expertise, Paris, France

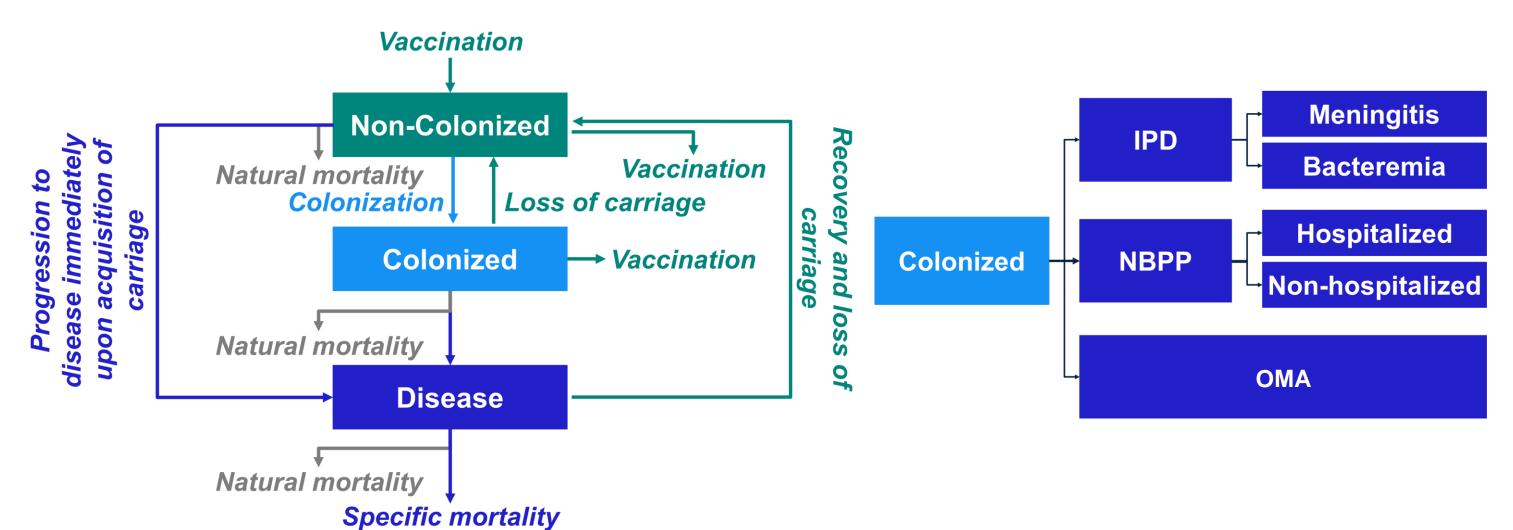
Background

- Streptococcus pneumoniae (Sp) is responsible for pneumococcal disease (PD), which includes:
- Invasive pneumococcal disease (IPD): meningitis, septicemia or pneumococcal bacteremia,
- Non-invasive pneumococcal disease (nIPD): acute otitis media (AOM) of the infants and children and non-bacteremic pneumococcal pneumonia (NBPP)
- PD prevention relies on vaccination, which is mandatory from the age of 2 months in all infants born since January 1st, 2018.
- In children, PREVENAR13® (PCV13) is recommended since 2009 (2+1 schedule at 2, 4 and 11 months), and contains 13 serotypes of *Sp*.
- VAXNEUVANCE® (PCV15 or V114) is a new pneumococcal polysaccharide conjugate vaccine, which contains 15 *Sp* serotypes (*i.e.*, two additional serotypes compared to PCV13: 22F and 33F).
- On October 21, 2022, V114 obtained a Marketing Authorization in the pediatric population and was recommended by the French NiTAG in 2023.

Objective

• To evaluate the cost-effectiveness of V114 compared to PCV13 in active immunization for the prevention of IPD, NBPP and AOM caused by *Streptococcus pneumoniae* in infants, children and adolescents.

Method


Economic model

- A dynamic transmission model (DTM) was developed, with three components:
- Demographic component (reproduces and simulates the demographic characteristics of the French population by age group).
- **Epidemiological component** (simulates the transmission of Sp, the epidemiology of PD, and the consequences of vaccination on them).
- Cost-effectiveness component (epidemiological results are associated with cost and quality of life data).
- The entire French population is simulated to account for all individuals whose health is affected by V114:
- <u>Directly</u> in the pediatric population
- <u>Indirectly</u> in the adult population, through the indirect effect of V114 on the reduction of the transmission of Sp.

Figure 1. Structure of the DTM

A. Epidemiological component

B. PD clinical manifestations

Clinical parameters – efficacy and utility scores

- V114 vaccine effectiveness (VE)^{1,2,3} against IPD in infants was calculated using the correlates of protection method validated by WHO,^{4,5} for common serotypes (ST) with PCV13. For the two additional STs (22F and 33F), V114 VE was estimated from the study by Siber et al.⁶ (average VE of 93% as antibody titers by opsonophagocytic activity (OPA) >0.35 μ g/mL).
- V114 and PCV13 VE against nIPD were determined based on data from the international literature.^{7,8,9}
- Annual disutility was applied for individuals with IPD or NBPP cases to baseline utilities from the general French adult population. For patients with post-meningitis sequalae, a disutility was applied the 1st year, and from the following year, an average utility of 0.693 was applied until death or the end of the simulation.

Cost parameters

- Direct medical costs (in €2022) were assessed, from a health system perspective, considering all French health system stakeholders.
- The following costs were considered: treatment acquisition and administration, inpatient management of IPD and nIPD, and outpatient management of nIPD.

References

- 1. Clinicaltrial.gov. Safety, Tolerability, and Immunogenicity of V114 in Healthy Infants (V114-025) (PNEU-PED-EU-1).
- 2. Clinicaltrial.gov. Safety, Tolerability, and Immunogenicity of a 3-dose Regimen of V114 in Healthy Infants (PNEU-PED-EU-2/V114-026) (PNEU-PED-EU-2).
- 3. Savulescu et al. Effectiveness of 10 and 13-valent pneumococcal conjugate vaccines against invasive pneumococcal disease in European children: SpIDnet observational multicentre study. Vaccine, 2022:40(29):3963-397
- SpIDnet observational multicentre study. Vaccine. 2022;40(29):3963-397

 4. OMS (2005) Recommendations for the production and control of pneumococcal conjugate vaccines. WHO Technical Report Series. No. 927.

Assessment of the model by the authorities

The methodology of V114 cost-effectiveness analysis was assessed by the HAS and deemed "acceptable".

Results

Base case analysis

- Over a 65-year time-horizon and in the overall population, the introduction of V114 at the claimed price in the pediatric population would allow to avert vs. PCV13:
 - ➤ 60,443 IPD cases (reduction of 11.9 % vs. PCV13), including 1,197 post-meningitis sequelae (reduction of 11.4%)
 - > 428,078 NBPP cases (reduction of 2.5%)
 - > 9,453 AOM cases (reduction of 0.11%)
 - ➤ 11,492 deaths linked to PD, including 11% of them in the population of active individuals aged 15-65 (n=1,258) and 87% among people aged ≥65 years (n=9,962).
- Introduction of V114 in the pediatric population would lead to cost savings of more than 300 millions € compared to PCV13 over 65 years.
- Thus, V114 is a dominant strategy in children vs. PCV13.

Table 1. Public health results – base-case analysis (Time horizon : 65 years)

Health outcomes	PCV13	V114	Increment (V114 - PCV13)
IPD	508,828	448,385	-60,443 (-11.9%)
Bacteremia	463,740	408,433	-55,307 (-11.9%)
Meningitis	45,087	39,951	-5,136 (-11.4%)
Post-meningitis sequelae	10,505	9,309	-1,197 (-11.4%)
NBPP	16,908,309	16,480,231	-428,078 (-2.5%)
Hospitalized NBPP	1,295,385	1,262,860	-32,525 (-2.5%)
Non-hospitalized NBPP	15,612,924	15,217,371	-395,553 (-2.5%)
AOM	72,315,372	72,235,919	-79,453 (-0.11%)
Death (total)	247,272	235,780	-11,492 (-4.6%)
IPD	53,758	47,048	-6,710 (-12.5%)
Hospitalized NBPP	110,452	107,729	-2,723 (-2.5%)
Non-hospitalized NBPP	83,062	81,003	-2,059 (-2.5%)

Table 2. Cost-effectiveness results – base-case analysis (Time horizon : 65 years)

Vaccine strategy	Costs	LYs	QALYs	ICER (€/LY)	ICER (€/QALY)
PCV13	€ 16.1 billion	2.2 billion	2.0 billion	-	-
V114	€ 15.8 billion	2.2 billion	2.0 billion	Dominant	Dominant
Increment	€ -309 million (-1,9%)	5 494	13 330	NA	NA

Sensitivity analyses

- V114 remains the dominant strategy in all scenarios and deterministic sensitivity analyses
- According to the probabilistic sensitivity analysis, the dispersion of results leads to 71.5% of iterations with incremental costs lower than zero (i.e., dominance).

Figure 2. Results for 500 PSA iterations

2000
1000
1000
-2000
5
10
10
15
20
Incremental Qaly (1,000 life years)

Conclusion

- Vaccination of the pediatric population with V114 at the claimed price appears to be the dominant strategy compared to PCV13 over a 65 years time-horizon (lower costs, better health outcomes).
- These results are due to V114-induced robust immune response against all serotypes included in the historical PCVs and two additional serotypes, protecting infants from the primary vaccination series.
- 5. OMS. Pneumococcal Conjugate Vaccine (PCV) Review of Impact Evidence (PRIME) Summary of Findings from Systematic Review.
- 6. Siber, et al. Estimating the protective concentration of anti-pneumococcal capsular polysaccharide antibodies. Vaccine. 2007;25(19):3816-3826.

 7. Eskola et al. Efficacy of a pneumococcal conjugate vaccine against acute otitis media. N Engl J Med. 2001;344(6):403-409.
- 8. Lewnard JA, Givon-Lavi N, Dagan R. Effectiveness of Pneumococcal Conjugate Vaccines Against Community-acquired Alveolar Pneumonia Attributable to Vaccine-serotype Streptococcus pneumoniae Among Children. Clin Infect Dis. 2021;73(7):e1423-e1433.
- 9. Pichichero M, Kaur R, Scott DA, et al. Effectiveness of 13-valent pneumococcal conjugate vaccination for protection against acute otitis media caused by Streptococcus pneumoniae in healthy young children: a prospective observational study. Lancet Child Adolesc Health. 2018;2(8):561-568.